【題目】已知二次函數(shù)y=2mx2+(1﹣m)x﹣1﹣m,下面說法錯誤的是( 。
A. 當m=1時,函數(shù)圖象的頂點坐標是(0,﹣2)
B. 當m=﹣1時,函數(shù)圖象與x軸有兩個交點
C. 函數(shù)圖象經(jīng)過定點(1,0),(﹣,﹣)
D. 當m>0時,函數(shù)圖象截x軸所得的線段長度小于
【答案】D
【解析】
將m=1和m=﹣1分別代入解析式即可判斷A與B是正確的;由y=2mx2+(1﹣m)x﹣1﹣m=m(2x2﹣x﹣1)+x﹣1,可知2x2﹣x﹣1=0時函數(shù)經(jīng)過定點;利用韋達定理求x1﹣x2|2=|(m﹣5)2﹣32|,即可求解.
解:當m=1時,y=2x2﹣2,頂點為(0,﹣2);
A正確;
當m=﹣1時,y=﹣2x2+2x,與x軸有兩個交點(0,0),(1,0);
B正確;
y=2mx2+(1﹣m)x﹣1﹣m=m(2x2﹣x﹣1)+x﹣1,
∴當2x2﹣x﹣1=0時,x=1或x=﹣,
拋物線經(jīng)過定點(1,0),(﹣,﹣);
C正確;
2mx2+(1﹣m)x﹣1﹣m=0時,x1+x2=,x1x2=,
∴|x1﹣x2|2=|(m﹣5)2﹣32|,
∴|x1﹣x2|最小為2;
D不正確;
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為直徑,點D在⊙O上,過點D作⊙O切線與AC的延長線交于點E,ED∥BC,連接AD交BC于點F.
(1)求證:∠BAD=∠DAE;
(2)若AB=6,AD=5,求DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某機構(gòu)調(diào)查了某小區(qū)部分居民當天行走的步數(shù)(單位:千步),并將數(shù)據(jù)整理繪制成如下不完整的頻數(shù)直方圖和扇形統(tǒng)計圖.
根據(jù)統(tǒng)計圖,得出下面四個結(jié)論:
①此次一共調(diào)查了200位小區(qū)居民;
②行走步數(shù)為8~12千步的人數(shù)超過調(diào)查總?cè)藬?shù)的一半;
③行走步數(shù)為4~8千步的人數(shù)為50人;
④扇形圖中,表示行走步數(shù)為12~16千步的扇形圓心角是72°.
其中正確的結(jié)論有( 。
A. ①②③B. ①②④C. ②③④D. ①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強,越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C.某自行車行經(jīng)營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價預計比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價多少元?
(2)該車行今年計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍.已知,A型車和B型車的進貨價格分別為1500元和1800元,計劃B型車銷售價格為2400元,應如何組織進貨才能使這批自行車銷售獲利最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我市迎接奧運圣火的活動中,某校教學樓上懸掛著宣傳條幅DC,小麗同學在點A處,測得條幅頂端D的仰角為30°,再向條幅方向前進10米后,又在點B處測得條幅頂端D的仰角為45°,已知測點A.B和C離地面高度都為1.44米,求條幅頂端D點距離地面的高度
(計算結(jié)果精確到0.1米,參考數(shù)據(jù)≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學小組在校內(nèi)對“你最認可的四大新生事物”進行調(diào)查,隨機調(diào)查了m人(每名學生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.
(1)根據(jù)圖中信息求出m=______,n=______;
(2)請你幫助他們將這兩個統(tǒng)計圖補全;
(3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校2000名學生中,大約有多少人最認可“微信”這一新生事物?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點(且點P不與點B、C重合),PE⊥AB于E,PF⊥AC于F.則EF的最小值為_____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的邊長為4,∠DAB=60°,E為BC的中點,在對角線AC上存在一點P,使△PBE的周長最小,則△PBE的周長的最小值為( )
A. +1B. C. +1D. +2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】長城汽車銷售公司5月份銷售某種型號汽車,當月該型號汽車的進價為30萬元/輛,若當月銷售量超過5輛時,每多售出1輛,所有售出的汽車進價均降低0.1萬元/輛.根據(jù)市場調(diào)查,月銷售量不會突破30臺.
(1)設(shè)當月該型號汽車的銷售量為x輛(x≤30,且x為正整數(shù)),實際進價為y萬元/輛,求y與x的函數(shù)關(guān)系式;
(2)已知該型號汽車的銷售價為32萬元/輛,公司計劃當月銷售利潤45萬元,那么該月需售出多少輛汽車?(注:銷售利潤=銷售價﹣進價)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com