【題目】如圖,某汽車司機在平坦的公路上行駛,前面出現(xiàn)兩個建筑物,在A處司機能看到甲建筑物一部分(把汽車看成一個點),這時視線與公路夾角為30°;

1)汽車行駛到什么位置時,司機剛好看不到甲建筑物?請在圖中標(biāo)出這個D點;

2)若CF的高度40米,當(dāng)剛好看不到甲建筑物時,司機的視線與與公路夾角為45°,請問汽車行駛了多少米?

【答案】1)詳見解析;(2(4040)米.

【解析】

(1)連接BC并延長到EA上一點D,即為所求答案;
(2)利用解RtCFDFD,解RtACF,求得AF,利用AD=AF-DF求出汽車行駛的距離.

(1)如圖所示:汽車行駛到點位置D時,司機剛好看不到建筑物B;

(2)CFAE,∠CDF=45°,

DF=CF=40(),

∵∠A=30°,tan30°=,

AF40,

AD=AFDF=(4040) ()

∴汽車向前行駛了(4040)米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工藝品店購進A,B兩種工藝品,已知這兩種工藝品的單價之和為200元,購進2A種工藝品和3B種工藝品需花費520元.

1)求A,B兩種工藝品的單價;

2)該店主欲用9600元用于進貨,且最多購進A種工藝品36個,B種工藝品的數(shù)量不超過A種工藝品的2倍,則共有幾種進貨方案?

3)已知售出一個A種工藝品可獲利10元,售出一個B種工藝品可獲利18元,該店主決定每售出一個B種工藝品,為希望工程捐款m元,在(2)的條件下,若A,B兩種工藝品全部售出后所有方案獲利均相同,則m的值是多少?此時店主可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了預(yù)測本校九年級男生畢業(yè)體育測試達標(biāo)情況,隨機抽取該年級部分男生進行了一次測試(滿分50分,成績均記為整數(shù)分),并按測試成績(單位:分)分成四類:類(),類(),類(),類()繪制出如圖所示的不完整條形統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:

成績等級

人數(shù)

所占百分比

類(

10

類(

22

類(

類(

3

1______,_______,_________;

2)補全條形統(tǒng)計圖;

3)若該校九年級男生有600名,類為測試成績不達標(biāo),請估計該校九年級男生畢業(yè)體育測試成績能達標(biāo)的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程(組)或不等式組:

1)解方程組

2)解分式方程+1

3)求不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBC4,P是△ABC的高CD上一個動點,以B點為旋轉(zhuǎn)中心把線段BP逆時針旋轉(zhuǎn)45°得到BP′,連接DP′,則DP′的最小值是( 。

A.2-2B.42C.2D.-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知,在矩形中,點的中點,點上一點,連接、,若,,,則線段的長為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠A60°,AC2,DAB邊上一個動點(不與點AB重合),EBC邊上一點,且∠CDE30°.設(shè)ADx,BEy,則下列圖象中,能表示yx的函數(shù)關(guān)系的圖象大致是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校學(xué)生對《最強大腦》、《朗讀者》、《中國詩詞大會》、《出彩中國人》四個電視節(jié)目的喜愛情況,隨杋抽取了名學(xué)生進行調(diào)查統(tǒng)計(要求每名學(xué)生選出并且只能選出一個自己最喜愛的節(jié)目),并將調(diào)查結(jié)果繪制成如圖統(tǒng)計圖表:

學(xué)生最喜愛的節(jié)目人數(shù)統(tǒng)計表

節(jié)目

人數(shù)(名)

百分比

最強大腦

朗讀者

中國詩詞大會

出彩中國

根據(jù)以上提供的信息,解答下列問題:

1______,_________;

2)補全上面的條形統(tǒng)計圖;

3)若該校共有學(xué)生5000名,根據(jù)抽樣調(diào)查結(jié)果,估計該校最喜愛《中國詩詞大會》節(jié)目的學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的方程

(1)求證:m取任何值時,方程總有實根.

(2)若二次函數(shù)的圖像關(guān)于y軸對稱.

a、求二次函數(shù)的解析式

b、已知一次函數(shù),證明:在實數(shù)范圍內(nèi),對于同一x值,這兩個函數(shù)所對應(yīng)的函數(shù)值均成立.

(3)在(2)的條件下,若二次函數(shù)的象經(jīng)過(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應(yīng)的函數(shù)值均成立,求二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊答案