【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點,AC是對角線,過點BBG∥ACDA的延長線于點G.

(1)求證:CE∥AF;

(2)若∠G=90°,求證:四邊形CEAF是菱形.

【答案】(1)見解析;(2)見解析

【解析】試題分析:(1)根據(jù)已知條件證明AE=CF,AE∥CF,從而得出四邊形DFBE是平行四邊形,即可證明CE∥AF;

(2)先證明CE=AE,再根據(jù)鄰邊相等的平行四邊形是菱形,從而得出結(jié)論.

試題解析:(1)在□ABCD中,ABCD,AB=CD,

E、F分別為邊AB、CD的中點,

CF=CDAE=AB,

CFAE,CF=AE,

∴四邊形CEAF為平行四邊形,

CEAF;

(2)BGAC,

∴∠G=DAC=90°,

∴△DAC為直角三角形,

又∵F為邊CD的中點,

AF=CD=CF,

又∵四邊形CEAF為平行四邊形,

∴四邊形CEAF為菱形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,F(xiàn)分別是菱形ABCD的邊AB,AD的中點,且AB=5,AC=6.

(1)求對角線BD的長;

(2)求證:四邊形AEOF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,DBC上任意一點,過點D分別向AB、AC引垂線,垂足分別為點E、F.

(1)如圖①,當點DBC的什么位置時,DE=DF?并證明;

(2)在滿足第一問的條件下,連接AD,此時圖中共有幾對全等三角形?請寫出所有的全等三角形(不必證明);

(3)如圖②,過點CAB邊上的高CG,請問DE、DF、CG的長之間存在怎樣的等量關(guān)系?并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=BC,BEAC于點E,ADBC于點D,BAD=45°,AD與BE交于點F,連接CF.

(1)求證:BF=2AE;

(2)若CD=,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校的學(xué)生為了對小雁塔有基本的認識,在老師的帶領(lǐng)下對小雁塔進行了測量.測量方法如下:如圖,間接測得小雁塔地部點D到地面上一點E的距離為115.2米,小雁塔的頂端為點B,且BD⊥DE,在點E處豎直放一個木棒,其頂端為C,CE=1.72米,在DE的延長線上找一點A,使A、C、B三點在同一直線上,測得AE=4.8米.求小雁塔的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上的點A表示的數(shù)為6,點B表示的數(shù)為﹣4,點C到點A、點B的距離相等,動點P從點B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為xx大于0)秒.

(1)點C表示的數(shù)是   ;

(2)當x=   秒時,點P到達點A處?

(3)運動過程中點P表示的數(shù)是   (用含字母x的式子表示);

(4)當PC之間的距離為2個單位長度時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=kx和雙曲線在第一象限相交于點A(1,2),點B在y軸上,且AB⊥y軸.有一動點P從原點出發(fā)沿y軸以每秒1個單位的速度向y軸的正方向運動,運動時間為t秒(t>0),過點P作PD⊥y軸,交直線OA于點C,交雙曲線于點D.

(1)求直線y=kx和雙曲線的函數(shù)關(guān)系式;

(2)設(shè)四邊形CDAB的面積為S,當P在線段OB上運動時(P不與B點重合),求S與t之間的函數(shù)關(guān)系式;

(3)在圖中第一象限的雙曲線上是否存在點Q,使以A、B、C、Q四點為頂點的四邊形是平行四邊形?若存在,請求出此時t的值和Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知兩點A(m,0),B(0,n)(n>m>0),點C在第一象限,ABBC,BC=BA,點P在線段OB上,OP=OA,AP的延長線與CB的延長線交于點M,AB與CP交于點N.

(1)點C的坐標為: (用含m,n的式子表示);

(2)求證:BM=BN;

(3)設(shè)點C關(guān)于直線AB的對稱點為D,點C關(guān)于直線AP的對稱點為G,求證:D,G關(guān)于x軸對稱.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°D、E分別為AB,AC邊上的中點,連接DE,將△ADE繞點E旋轉(zhuǎn)180°得到△CFE,連接AFAC

1)求證:四邊形ADCF是菱形;

2)若BC=8,AC=6,求四邊形ABCF的周長.

查看答案和解析>>

同步練習冊答案