【題目】如圖,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣43).

1)請畫出ABC關于y軸對稱的DEF(其中D,E,F分別是A,BC的對應點,不寫畫法);

2)直接寫出D,EF三點的坐標:D   ),E   ),F   );

3)在y軸上存在一點,使PCPB最大,則點P的坐標為   

【答案】1)如圖,△DEF即為所求作三角形;見解析;(2)點D15)、E1,0)、F4,3);(3)點P坐標為(0,﹣1),

【解析】

1)分別作出點A、B、C關于y軸對稱點D、EF,即可得DEF;
2)根據(jù)(1)中圖形可得坐標;
3)延長CBy軸于P,點P即為所求,待定系數(shù)法求直線BC所在直線解析式,即可知其與y軸的交點P的坐標.

1)如圖,△DEF即為所求作三角形;

2)由圖可知點D1,5)、E1,0)、F43),

故答案為:15;10;4,3

3)延長CBy軸于P,此時PCPB最大,故點P即為所求,

BC所在直線解析式為ykx+b,

將點B(﹣1,0)、點C(﹣4,3)代入,得:,

解得:

∴直線BC所在直線解析式為y=﹣x1,

x0時,y=﹣1,

∴點P坐標為(0,﹣1),

故答案為:(0,﹣1).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在東西方向的海岸線MN上有A,B兩艘船,船長都收到已觸礁擱淺的船P的求救信號,已知船P在船A的北偏東60°方向36海里處,船P在船B頂點北偏西37°方向,若船A,船B分別以30海里/小時,20海里/小時的速度同時出發(fā),勻速前往救援,通過計算判斷哪艘船先到達船P處.(參考數(shù)據(jù)=1.73,sin37°=0.6,cos37°=0.80)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線的部分圖象如圖,則下列說法:①對稱軸是直線;②當時,;③;④方程無實數(shù)根,其中正確的有________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AB=10,AC=8.線段AD由線段AB繞點A按逆時針方向旋轉(zhuǎn)90°得到,△EFG由△ABC沿CB方向平移得到,且直線EF過點D.

(1)求∠BDF的大;

(2)求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在學習過程中,對教材中的一個有趣問題做如下探究:

(習題回顧)已知:如圖1,在ABC中,∠ACB=90°,AE是角平分線,CD是高,AE、CD相交于點F.求證:∠CFE=CEF

(變式思考)如圖2,在ABC中,∠ACB=90°CDAB邊上的高,若ABC的外角∠BAG的平分線交CD的延長線于點F,其反向延長線與BC邊的延長線交于點E,則∠CFE與∠CEF還相等嗎?說明理由;

(探究廷伸)如圖3,在ABC中,在AB上存在一點D,使得∠ACD=B,角平分線AECD于點FABC的外角∠BAG的平分線所在直線MNBC的延長線交于點M.試判斷∠M與∠CFE的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABC中,∠BAC=130°,AB的垂直平分線MEBC于點M,交AB于點E,AC的垂直平分線NFBC于點N,交AC于點F,則∠MAN為(

A.80°B.70°C.60°D.50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC.AB=AC.∠BAC=36°.BD是∠ABC的平分線,AC于點D,EAB的中點連接ED并延長,交BC的延長線于點F,連接AF.求證:(1)EF⊥AB; (2)△ACF為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校從兩名優(yōu)秀選手中選一名參加全市中小學運動會的男子米跑項目,該校預先對這兩名選手測試了次,測試成績?nèi)缦卤?/span>

甲的成績(秒)

乙的成績(秒)

為了衡量這兩名選手米跑的水平,你選擇哪些統(tǒng)計量?請分別求出這些統(tǒng)計量的值.

你認為選派誰比較合適?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,埃航客機失事后,國家主席親自發(fā)電進行慰問,埃及政府出動了多艘艦船和飛機進行搜救,其中一艘潛艇在海面下米的點處測得俯角為的前下方海底有黑匣子信號發(fā)出,繼續(xù)沿原方向直線航行米后到達點,在處測得俯角為的前下方海底有黑匣子信號發(fā)出,求海底黑匣子點距離海面的深度(結(jié)果保留根號).

查看答案和解析>>

同步練習冊答案