【題目】如圖,在△ABC中,∠B=90°,AB=BC,∠BCM是△ABC的外角,∠BAC、∠BCM的平分線交于點(diǎn)D,AD與BC交于點(diǎn)E,若BE=2,則AEDE=____.
【答案】8+8.
【解析】
作EF⊥AC于F,由角平分線的性質(zhì)得出FE=BE=2,證出△CEF是等腰直角三角形,再根據(jù)勾股定理表示出AE,證出DE=DC,∠CDE=45°,作EM⊥CD于M,則∠MED=45°,作∠ECN=∠CEM=22.5°,則CN=EN,∠CNM=45°,則△MDE和△MCN是等腰直角三角形,得出ME=MD,MC=MN,設(shè)MC=MN=x,在Rt△MCE中,由勾股定理得出方程,解出x,即可得到答案.
作EF⊥AC于F,如圖所示:
∵AD是∠BAC的平分線,∠B=90°,EF⊥AC于F,
∴FE=BE=2,
∵AB=BC,
∴∠BAC=∠ACB=45°,
∴∠BCM=135°,△CEF是等腰直角三角形,
∴FC=FE=2,CE=FE=2,
∴AB=BC=BE+CE=2+2,
∴AE===2,
∵∠BAC、∠BCM的平分線交于點(diǎn)D,
∴∠CAE=∠BAC=22.5°,∠DCE=∠BCM=67.5°,
∵∠DEC=∠CAE+∠ACB=67.5°=∠DCE,
∴DE=DC,∠CDE=45°,
作EM⊥CD于M,則∠MED=45°,
∴∠CEM=67.5°-45°=22.5°,
作∠ECN=∠CEM=22.5°,
則CN=EN,∠CNM=45°,
則△MDE和△MCN是等腰直角三角形,
∴ME=MD,MC=MN,
設(shè)MC=MN=x,則EN=CN=x,
∴MD=ME=x+x,
在Rt△MCE中,由勾股定理得:x2+(x+x)2=(2)2,
解得:x=,
∴DE=DC=(2+)x=(2+),
∴AEDE=2(2+)=2(2+)=8+8;
故答案為:8+8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知:直線y=-x-4分別交x、y軸于A、C兩點(diǎn),點(diǎn)B為線段AC的中點(diǎn),拋物線y=ax2+bx經(jīng)過(guò)A、B兩點(diǎn),
(1)求該拋物線的函數(shù)關(guān)系式;
(2)以點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)D為圓心,以OD為半徑作⊙D,連結(jié)AD、CD,問(wèn)在拋物線上是否存在點(diǎn)P,使S△ACP=2S△ACD?若存在,請(qǐng)求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若E為⊙D上一動(dòng)點(diǎn)(不與A、O重合),連結(jié)AE、OE,問(wèn)在x軸上是否存在點(diǎn)Q,使∠ACQ:∠AEO=2:3?若存在,請(qǐng)求出所有滿足條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小李通過(guò)對(duì)某地區(qū)1998年至2000年快餐公司發(fā)展情況的調(diào)查,制成了該地區(qū)快餐公司個(gè)數(shù)情況的條形圖如圖所示,和快餐公司盒飯年銷量的平均數(shù)情況條形圖,利用這些信息解答下列問(wèn)題:
(1)1999年該地區(qū)銷售盒飯共 萬(wàn)盒;
(2)該地區(qū)盒飯銷量最大的年份是 個(gè),這一年的年銷量是 萬(wàn)盒;
(3)這三年中該地區(qū)每年平均銷售盒飯多少萬(wàn)盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面內(nèi)直角坐標(biāo)系中,直線y=-x+6分別于x軸、y軸交于A、B兩點(diǎn),點(diǎn)C與點(diǎn)A關(guān)于y軸對(duì)稱,點(diǎn)E為線段OB上一動(dòng)點(diǎn)(不與O、B重合),CE的延長(zhǎng)線與AB交于點(diǎn)D,過(guò)A、D、E三點(diǎn)的圓與y軸交于點(diǎn)F
(1)求A、B、C三點(diǎn)的坐標(biāo)
(2)求證:BE·EF=DE·AE
(3)若tan∠BAE=,求點(diǎn)F的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2013年9月23日強(qiáng)臺(tái)風(fēng)“天兔”登錄深圳,伴隨著就是狂風(fēng)暴雨。梧桐山山坡上有一棵與水平面垂直的大樹,臺(tái)風(fēng)過(guò)后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面(如圖所示)。已知山坡的坡角∠AEF=23°,量得樹干的傾斜角為∠BAC=38°,大樹被折斷部分和坡面所成的角∠ADC=60°, AD=3m。
(1)求∠DAC的度數(shù);
(2)求這棵大樹折斷前的高度。(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,G為AD上一點(diǎn),連接BG,CG,作CE⊥BG于點(diǎn)E,連接ED交GC于點(diǎn)F.
(1)如圖1,若點(diǎn)G為AD的中點(diǎn),則線段BG與CG有何數(shù)量關(guān)系?請(qǐng)說(shuō)理由.
(2)如圖2,若點(diǎn)E恰好為BG的中點(diǎn),且AB=3,AG=k(0<k<3),求的值(用含k的代數(shù)式表示);
(3)在(2)有條件下,若M、N分別為GC、EC上的任意兩點(diǎn),連接NF、NM,當(dāng)k=時(shí),求NF+NM的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O中,弦AB⊥CD于E,若已知AD=9,BC=12,則⊙O的半徑為( )
A.5.5B.6C.7.5D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)攝制組乘船往返于A碼頭和B碼頭進(jìn)行拍攝,在A、B兩碼頭間設(shè)置拍攝中心C.在往返過(guò)程中,假設(shè)船在A、B、C處均不停留,船離開B碼頭的距離s(千米)與航行的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系式如圖所示.根據(jù)圖象信息,解答下列問(wèn)題:
(1)求船從B碼頭返回A碼頭時(shí)的速度及返回時(shí)s關(guān)于t的函數(shù)表達(dá)式.
(2)求水流的速度.
(3)若拍攝中心C設(shè)在離A碼頭12千米處,攝制組在拍攝中心分兩組拍攝,其中一組乘橡皮艇漂流到B碼頭處,另一組同時(shí)乘船到達(dá)A碼頭后馬上返回,求兩攝制組相遇時(shí)離拍攝中心C的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】樂(lè)山獨(dú)峰,倚天獨(dú)立.身高1.6米的小明(GF)和身高1.8米的爸爸(HE)前去游覽,山腰處的一棵綴滿紅葉的楓樹(A)吸引了他們的目光,已知小明的仰角為30°,爸爸的仰角為45°,若小明與爸爸之間(EF)相距6米,求楓樹(A)與地面的距離(AD)為多少米?(參考數(shù)據(jù):1.41,1.73,結(jié)果保留一位小數(shù).)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com