【題目】如圖,⊙O中,弦AB⊥CD于E,若已知AD=9,BC=12,則⊙O的半徑為( )
A.5.5B.6C.7.5D.8
【答案】C
【解析】
連接DO并延長(zhǎng)DO交圓O于點(diǎn)F,連接BD,AF,BF,根據(jù)圓周角登錄得到∠DAE=∠DFB,∠AED=∠FBD=90°,根據(jù)三角形的內(nèi)和得到∠ADC=∠FDB,由角的和差得到∠ADF=∠CDB,得到,求得AF=BC=12,然后由勾股定理即可得到結(jié)論.
連接DO并延長(zhǎng)DO交圓O于點(diǎn)F,連接BD,AF,BF,
∵∠DAE=∠DFB,∠AED=∠FBD=90°,
∴∠ADC=∠FDB,
∴∠ADF=∠CDB,
∴,
∴AF=BC=12,
∵∠DAF=90°,
∴DF===15,
∴⊙O的半徑為7.5.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在地時(shí)距地面的高度為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)關(guān)系式.
(3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為50米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校教學(xué)樓與實(shí)驗(yàn)樓的水平間距米,在實(shí)驗(yàn)樓頂部點(diǎn)測(cè)得教學(xué)樓頂部點(diǎn)的仰角是,底部點(diǎn)的俯角是,則教學(xué)樓的高度是____米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=BC,∠BCM是△ABC的外角,∠BAC、∠BCM的平分線交于點(diǎn)D,AD與BC交于點(diǎn)E,若BE=2,則AEDE=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以CB為半徑作⊙C,交AC于點(diǎn)D,交AC的延長(zhǎng)線于點(diǎn)E,連接ED,BE.
(1)求證:△ABD∽△AEB;
(2)當(dāng) = 時(shí),求tanE;
(3)在(2)的條件下,作∠BAC的平分線,與BE交于點(diǎn)F,若AF=2,求⊙C的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB以3cm/s的速度向點(diǎn)B移動(dòng)(不與點(diǎn)A,B重合);同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)沿CD以2cm/s的速度向點(diǎn)D移動(dòng)(不與點(diǎn)C、D重合),經(jīng)過幾秒,△PDQ為直角三角形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡(jiǎn),再求值:,其中|x|≤1,且x為整數(shù).
小海同學(xué)的解法如下:
解:原式=﹣ ①
=(x﹣1)2﹣x2+3 ②
=x2﹣2x﹣1﹣x2+3 ③
=﹣2x+2.④
當(dāng)x=﹣1時(shí),⑤
原式=﹣2×(﹣1)+2⑥
=2+2=4.⑦
請(qǐng)指出他解答過程中的錯(cuò)誤(寫出相應(yīng)的序號(hào),多寫不給分),并寫出正確的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等腰Rt△ABC中,∠ACB=90°,CB=CA,在△ABE中,∠AEB=90°,AE與BC交于點(diǎn)F.
(1)若∠BAE=30°,BF=2,求BE的長(zhǎng);
(2)如圖2,D為BE延長(zhǎng)線上一點(diǎn),連接AD、FD、CD,若AB=AD,∠ACD=135°,求證:BD+BF=AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一座拋物線形拱橋,正常水位橋下面寬度為米,拱頂距離水平面米,如圖建立直角坐標(biāo)系,若正常水位時(shí),橋下水深米,為保證過往船只順利航行,橋下水面寬度不得小于米,則當(dāng)水深超過多少米時(shí),就會(huì)影響過往船只的順利航行( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com