【題目】如圖,在平面直角坐標(biāo)系中,直線lx軸相交于點(diǎn)M(3,0),與y軸相交于點(diǎn)N(0,4),點(diǎn)AMN的中點(diǎn),反比例函數(shù)y=(x0)的圖象過點(diǎn)A.

(1)求直線l和反比例函數(shù)的解析式;

(2)在函數(shù)y=(k0)的圖象上取異于點(diǎn)A的一點(diǎn)C,作CBx軸于點(diǎn)B,連接OC交直線l于點(diǎn)P,若△ONP的面積是△OBC面積的3倍,求點(diǎn)P的坐標(biāo).

【答案】(1)y=﹣x+4,y= ;(2)點(diǎn)P的坐標(biāo)為( ,1).

【解析】試題分析:1設(shè)直線l的解析式為,利用待定系數(shù)法即可求得直線的解析式;根據(jù)已知求得A點(diǎn)的坐標(biāo),然后把A代入 即可求得解析式;
2)根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出 進(jìn)而得出 設(shè)P點(diǎn)的坐標(biāo)為根據(jù) 即可求得的值,進(jìn)而求得P的坐標(biāo).

試題解析:1)設(shè)直線l的解析式為

代入

解得: ,

∴直線l的解析式為

∵點(diǎn)A為線段MN的中點(diǎn),

∴點(diǎn)A的坐標(biāo)為

代入

∴反比例函數(shù)解析式為

2

∵點(diǎn)

設(shè)點(diǎn)P的坐標(biāo)為

∴點(diǎn)P的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請根據(jù)圖中提供的信息,回答下列問題。

1)一個(gè)暖瓶與一個(gè)水杯分別是多少元?

2)甲、乙兩家商場同時(shí)出售同樣的暖瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打九折;乙商場規(guī)定:買一個(gè)暖瓶贈送一個(gè)水杯.若某單位想要買4個(gè)暖瓶和15個(gè)水杯,請問選擇哪家商場購買更合算,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請根據(jù)圖中提供的信息,回答下列問題:

1)一個(gè)水瓶與一個(gè)水杯分別是多少元?

2)甲、乙兩家商場同時(shí)出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個(gè)水瓶贈送兩個(gè)水杯,另外購買的水杯按原價(jià)賣.若某單位想要買5個(gè)水瓶和nn10,且n為整數(shù))個(gè)水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一個(gè)三角形紙片ACB,其中∠ACB=90°,AC=8,BC=6,E、F分別是AC、AB邊上的點(diǎn),連接EF.(1)如圖1,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,且使S四邊形ECBF=4SEDF,求ED的長;

(2)如圖2,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在BC邊上的點(diǎn)M處,且使MFCA.

①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;

②求EF的長;

(3)如圖3,若FE的延長線與BC的延長線交于點(diǎn)N,CN=2,CE=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)0!表示自然數(shù)由1n的連乘積,并規(guī)定0!1,Anm,nmn≥0nm)例如1!12!1×22,3!1×2×36A5360,C6415,請回答以下問題:

1)求C32,A32;

2)試根據(jù)C32,A32,2!的值寫出C32,A32,2!滿足的等量關(guān)系;試根據(jù)C43,A433!的值寫出C43A43,3!滿足的等量關(guān)系;試根據(jù)C54,A54,4!的值寫出C54A54,4!滿足的等量關(guān)系;

3)探究Amn,Cmnn!之間滿足的等量關(guān)系(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各式寫出省略加號的和的形式,并說出它們的兩種讀法:

1)(-20-+10+-5--6);

2)(+8.5--2.9-2.5+-5.3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是等腰△ABC底邊BC上的高,點(diǎn)O是AC中點(diǎn),延長DO到E

使AE∥BC,連接AE。

(1)求證:四邊形ADCE是矩形;

(2)①若AB=17,BC=16,則四邊形ADCE的面積= ;

②若AB=10,則BC= 時(shí),四邊形ADCE是正方形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,B是數(shù)軸上在A左側(cè)的一點(diǎn),且A,B兩點(diǎn)間的距離為10.動點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動。

1)運(yùn)動1秒時(shí),數(shù)軸上點(diǎn)B表示的數(shù)是______點(diǎn)P表示的數(shù)是______

2)動點(diǎn)Q從點(diǎn)B出發(fā),以每秒4個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動,若點(diǎn)P、Q時(shí)出發(fā).求:

①當(dāng)點(diǎn)P運(yùn)動多少秒時(shí),點(diǎn)P與點(diǎn)Q相遇?

②當(dāng)點(diǎn)P運(yùn)動多少秒時(shí),點(diǎn)P與點(diǎn)Q間的距離為8個(gè)單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)統(tǒng)計(jì)分析,某市跨河大橋上的車流速度v(千米/小時(shí))是車流密度x(輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到220輛/千米時(shí),造成堵塞,此時(shí)車流速度為0千米/小時(shí);當(dāng)車流密度不超過20輛/千米時(shí),車流速度為80千米/小時(shí),研究表明:當(dāng)20≤x≤220時(shí),車流速度v是車流密度x的一次函數(shù).

(1)求大橋上車流密度為100輛/千米時(shí)的車流速度;

(2)在交通高峰時(shí)段,為使大橋上的車流速度大于40千米/小時(shí)且小于60千米/小時(shí),應(yīng)控制大橋上的車流密度在什么范圍內(nèi)?

(3)車流量(輛/小時(shí))是單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),即:車流量=車流速度×車流密度.求大橋上車流量y的最大值.

查看答案和解析>>

同步練習(xí)冊答案