【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(-4,4).點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度沿x軸向點(diǎn)O運(yùn)動(dòng);點(diǎn)Q從點(diǎn)O同時(shí)出發(fā),以相同的速度沿x軸的正方向運(yùn)動(dòng),規(guī)定點(diǎn)P到達(dá)點(diǎn)O時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接BP,過P點(diǎn)作BP的垂線,與過點(diǎn)Q平行于y軸的直線l相交于點(diǎn)D.BD與y軸交于點(diǎn)E,連接PE.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).
(1)寫出∠PBD的度數(shù)和點(diǎn)D的坐標(biāo)(點(diǎn)D的坐標(biāo)用t表示);
(2)探索△POE周長是否隨時(shí)間t的變化而變化,若變化,說明理由;若不變,試求這個(gè)定值.
(3)當(dāng)t為何值時(shí),△PBE為等腰三角形?
【答案】(1)45°,(t,t).(2)△POE周長是定值,該定值為8.(3)當(dāng)t為4秒或(4-4)秒時(shí),△PBE為等腰三角形.
【解析】
試題(1)易證△BAP≌△PQD,從而得到DQ=AP=t,從而可以求出∠PBD的度數(shù)和點(diǎn)D的坐標(biāo);
(2)由于∠EBP=45°,故圖1是以正方形為背景的一個(gè)基本圖形,容易得到EP=AP+CE.容易得到△POE周長等于AO+CO=8,從而解決問題;
(3)EP=AP+CE,由于△PBE底邊不定,故分三種情況討論,借助于三角形全等及勾股定理進(jìn)行求解,然后結(jié)合條件進(jìn)行取舍,最終確定符合要求的t值.
試題解析:(1)如圖1,
由題可得:AP=OQ=1×t=t(秒)
∴AO=PQ.
∵四邊形OABC是正方形,
∴AO=AB=BC=OC,
∠BAO=∠AOC=∠OCB=∠ABC=90°.
∵DP⊥BP,
∴∠BPD=90°.
∴∠BPA=90°-∠DPQ=∠PDQ.
∵AO=PQ,AO=AB,
∴AB=PQ.
在△BAP和△PQD中,
∴△BAP≌△PQD(AAS).
∴AP=QD,BP=PD.
∵∠BPD=90°,BP=PD,
∴∠PBD=∠PDB=45°.
∵AP=t,
∴DQ=t.
∴點(diǎn)D坐標(biāo)為(t,t).
(2)∵∠EBP=45°
∴由圖1可以得到EP=CE+AP,
∴OP+PE+OE=OP+AP+CE+OE
=AO+CO
=4+4
=8.
∴△POE周長是定值,該定值為8.
(3)①若PB=PE,
由△PAB≌△DQP得PB=PD,
顯然PB≠PE,
∴這種情況應(yīng)舍去.
②若EB=EP,
則∠PBE=∠BPE=45°.
∴∠BEP=90°.
∴∠PEO=90°-∠BEC=∠EBC.
在△POE和△ECB中,
∴△POE≌△ECB(AAS).
∴OE=CB=OC.
∴點(diǎn)E與點(diǎn)C重合(EC=0).
∴點(diǎn)P與點(diǎn)O重合(PO=0).
∵點(diǎn)B(-4,4),
∴AO=CO=4.
此時(shí)t=AP=AO=4.
③若BP=BE,
在Rt△BAP和Rt△BCE中,
∴Rt△BAP≌Rt△BCE(HL).
∴AP=CE.
∵AP=t,
∴CE=t.
∴PO=EO=4-t.
∵∠POE=90°,
∴PE=.
延長OA到點(diǎn)F,使得AF=CE,連接BF,如圖2所示.
在△FAB和△ECB中,
∴△FAB≌△ECB.
∴FB=EB,∠FBA=∠EBC.
∵∠EBP=45°,∠ABC=90°,
∴∠ABP+∠EBC=45°.
∴∠FBP=∠FBA+∠ABP
=∠EBC+∠ABP=45°.
∴∠FBP=∠EBP.
在△FBP和△EBP中,
∴△FBP≌△EBP(SAS).
∴FP=EP.
∴EP=FP=FA+AP
=CE+AP.
∴EP=t+t=2t.
∴(4-t)=2t.
解得:t=4-4
∴當(dāng)t為4秒或(4-4)秒時(shí),△PBE為等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線y=2x-2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)如圖①,點(diǎn)A的坐標(biāo)為_______,點(diǎn)B的坐標(biāo)為_______;
(2)如圖②,點(diǎn)C是直線AB上不同于點(diǎn)B的點(diǎn),且CA=AB.
①求點(diǎn)C的坐標(biāo);
②過動(dòng)點(diǎn)P(m,0)且垂直與x軸的直線與直線AB交于點(diǎn)E,若點(diǎn)E不在線段BC上,則m的取值范圍是_______;
(3)若∠ABN=45,求直線BN的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程交由甲、乙兩個(gè)工程隊(duì)來完成,已知甲工程隊(duì)單獨(dú)完成需要60天,乙工程隊(duì)單獨(dú)完成需要40天
(1)若甲工程隊(duì)先做30天后,剩余由乙工程隊(duì)來完成,還需要用時(shí) 天
(2)若甲工程隊(duì)先做20天,乙工程隊(duì)再參加,兩個(gè)工程隊(duì)一起來完成剩余的工程,求共需多少天完成該工程任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的有( )
①有理數(shù)包括正有理數(shù)和負(fù)有理數(shù); ②絕對值等于它本身的數(shù)是非負(fù)數(shù);③若|b|=|﹣5|,則b=-5 ; ④當(dāng)b=2時(shí),5﹣|2b﹣4|有最小值是5;⑤若、互為相反數(shù),則;⑥是關(guān)于、的六次三項(xiàng)式.
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,CEAD于點(diǎn)E,且CB=CE,點(diǎn)F為CD邊上的一點(diǎn),CB=CF,連接BF交CE于點(diǎn)G.
(1)若,CF=,求CG的長;
(2)求證:AB=ED+CG
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:①若a<1,則(a﹣1)=﹣;②圓是中心對稱圖形又是軸對稱圖形;③的算術(shù)平方根是4;④如果方程ax2+2x+1=0有實(shí)數(shù)根,則實(shí)數(shù)a≤1.其中正確的命題個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了深化課程改革,某校積極開展校本課程建設(shè),計(jì)劃成立“文學(xué)鑒賞”、“國際象棋”、“音樂舞蹈”和“書法”等說個(gè)社團(tuán),要求每位學(xué)生都自主選擇其中一個(gè)社團(tuán),為此,隨機(jī)調(diào)查了本校部分學(xué)生選擇社團(tuán)的意向.并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表(不完整):
選擇意向 | 文學(xué)鑒賞 | 國際象棋 | 音樂舞蹈 | 書法 | 其他 |
所占百分比 | a | 20% | b | 10% | 5% |
根據(jù)統(tǒng)計(jì)圖表的信息,解答下列問題:
(1)求本次抽樣調(diào)查的學(xué)生總?cè)藬?shù)及a、b的值;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有1200名學(xué)生,試估計(jì)全校選擇“音樂舞蹈”社團(tuán)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,3)。雙曲線的圖像經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE。
(1)求k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是邊上一點(diǎn),且△FBC∽△DEB,求直線FB的解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圓中,、是圓的半徑,點(diǎn)在劣弧弧上,,,∥,聯(lián)結(jié).
(1)如圖1,求證:平分;
(2)點(diǎn)在弦的延長線上,聯(lián)結(jié),如果△是直角三角形,請你在如圖2中畫出
點(diǎn)的位置并求的長;
(3)如圖3,點(diǎn)在弦上,與點(diǎn)不重合,聯(lián)結(jié)與弦交于點(diǎn),設(shè)點(diǎn)與點(diǎn)的
距離為,△的面積為,求與的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com