【題目】如圖,在中,AD平分,按如下步驟作圖:

第一步,分別以點A、D為圓心,以大于的長為半徑在AD兩側(cè)作弧,交于兩點M、N;

第二步,連接MN分別交AB、AC于點E、F;

第三步,連接DE、DF.

,,求BD的長是______

【答案】

【解析】

利用基本作圖得MN垂直平分AD,則AE=DE,F(xiàn)A=FC,再證明四邊形AEDF為菱形得到AE=AF=4,DE∥AC,然后利用平行線分線段成比例定理計算BD的長.

解:由作法得MN垂直平分AD,則AE=DE,F(xiàn)A=FC,

∵AD平分∠EAF,AD⊥EF,

∴△AEF為等腰三角形,

∴AE=AF,

∴AE=AF=DE=DF,

∴四邊形AEDF為菱形,

∴AE=AF=4,DE∥AC,

=,即=,

∴BD=

故答案為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點D在⊙O上,連接CDDC=BC,過C點作AD的垂線交AD延長線于E.

(1)求證:CE是⊙O的切線;

(2)若AB=5,AC=4,求tan∠DCE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C、EB、D、F分別在∠GAH的兩邊上,且AB=BC=CD=DE=EF,若∠A=18°,則∠GEF的度數(shù)是( )

A. 80° B. 90° C. 100° D. 108°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,DEBC,點F在邊AC上,DFBE相交于點G,且∠EDF=ABE.

求證:(1)DEF∽△BDE;(2)DGDF=DBEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的頂點在坐標原點,正方形的邊在同一直線上, 在同一直線上,且,邊和邊所在直線的解析式分別為: ,則點的坐標是(

A.(6,-1)B.(7-1)C.(7-2)D.(6,-2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明放學騎車回家過程中,離校的路程s與時間t的關(guān)系如圖,其中小明先以平時回家的速度騎車,中間因事停留片刻,因此加快速度,請根據(jù)圖象回答下列問題:

開始10分鐘內(nèi)的速度是多少?

若小明在停留后速度每分鐘加快100米,求a的值和小明平時回家所需的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電腦經(jīng)銷商計劃購進一批電腦機箱和液晶顯示器,若購電腦機箱10臺和液液晶顯示器8臺,共需要資金7000元;若購進電腦機箱2臺和液示器5臺,共需要資金4120元.

1)每臺電腦機箱、液晶顯示器的進價各是多少元?

2)該經(jīng)銷商購進這兩種商品共50臺,而可用于購買這兩種商品的資金不超過22240元.根據(jù)市場行情,銷售電腦機箱、液晶顯示器一臺分別可獲利10元和160元.該經(jīng)銷商希望銷售完這兩種商品,所獲利潤不少于4100元.試問:該經(jīng)銷商有哪幾種進貨方案?哪種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關(guān)于x的一元二次方程mx2﹣(2m﹣2)x+m=0有實根.

(1)m的取值范圍;

(2)若原方程兩個實數(shù)根為x1,x2,是否存在實數(shù)m,使得=1?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究:

1)計算判斷:(計算并判斷大小,填寫符號:“>”“<”“=”

①當時,_____;

②當,時,_____;

③當,時,______;

④當,時,______

⑤當,時,______;

⑥當,時,_______;

2)歸納猜想:猜想并寫出關(guān)于是常數(shù),且,)之間的數(shù)量關(guān)系;

3)探究證明:請補全以下證明過程:

證明:根據(jù)一個實數(shù)的平方是非負數(shù),可得,

,

4)實踐應用:要制作面積為的長方形(或正方形)框架,直接利用探究得出的結(jié)論,求出框架周長的最小值.

查看答案和解析>>

同步練習冊答案