【題目】在△ABC中,過(guò)A作BC的平行線,交∠ACB的平分線于點(diǎn)D,點(diǎn)E是BC上一點(diǎn),連接DE,交AB于點(diǎn)F,∠DEB+∠CAD=180°.
(1)如圖1,求證:四邊形ACED是菱形;
(2)如圖2,G是AD的中點(diǎn),H是AC邊中點(diǎn),連接CG、EG、EH,若∠ACB=90°,BC=2AC,在不添加任何輔助線的情況下,請(qǐng)直接寫(xiě)出圖中與△CEH全等的三角形(不含△CEH本身).
【答案】(1)見(jiàn)解析;(2)△BEF,△ADF,△EDG,△CAG
【解析】
(1)先證明四邊形ACED是平行四邊形,然后通過(guò)證明AD=AC,于是可得到結(jié)論;
(2)根據(jù)已知條件得到菱形ACED是正方形,求得∠D=∠CAG=∠DEC=90°,AC=AD=CE,根據(jù)全等三角形的判定定理即可得到結(jié)論.
(1)證明:∵AD//BC,
∴∠ADE=∠DEB,
∵∠DEB+∠DEC=180°,∠DEB+∠CAD=180°,
∴∠DEC=∠DAC,
∴∠ADE+∠DAC=180°,
∴DE//AC,
∴四邊形ACED是平行四邊形,
∵AD//BC,
∴∠ADC=∠BCD,
∵CD平分∠ACB,
∴∠ACD=∠BCD,
∴∠ADC=∠ACD,
∴AD=AC,
∴四邊形ACED是菱形;
(2)解:∵四邊形ACED是菱形,∠ACB=90°,
∴菱形ACED是正方形,
∴∠D=∠CAG=∠DEC=90°,
AC=AD=CE,
∵G是AD的中點(diǎn),H是AC邊中點(diǎn),
∴AG=DG=CE,
∴△EDG≌△CAG≌△ECH(SAS),
∵BC=2AC,
∴BE=CE=AD,
∵AD//BE,
∴∠B=∠DAF,
∵∠AFD=∠BFE,
∴△BFE≌△ADF(AAS),
∴EF=DF=,
∴EF=CH,
∴△BEF≌△ECH(SAS),
∴圖中與△CEH全等的三角形有△BEF,△ADF,△EDG,△CAG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC,∠B=90゜,AB=3,BC=6,動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),動(dòng)點(diǎn)P沿BA以1個(gè)單位長(zhǎng)度/秒的速度向點(diǎn)A移動(dòng),動(dòng)點(diǎn)Q沿BC以2個(gè)單位長(zhǎng)度/秒的速度向點(diǎn)C移動(dòng),運(yùn)動(dòng)時(shí)間為t秒.連接PQ,將△QBP繞點(diǎn)Q順時(shí)針旋轉(zhuǎn)90°得到△,設(shè)△與△ABC重合部分面積是S.
(1)求證:PQ∥AC;
(2)求S與t的函數(shù)關(guān)系式,并直接寫(xiě)出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,關(guān)于x的方程x2+2x-k=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若x1,x2是這個(gè)方程的兩個(gè)實(shí)數(shù)根,求的值;
(3)根據(jù)(2)的結(jié)果你能得出什么結(jié)論?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=-2,與x軸的一個(gè)交點(diǎn)在(-3,0)和(-4,0)之間,其部分圖象如圖所示.則下列結(jié)論:①4a-b=0;②c<0;③-3a+c>0;④4a-2b>at2+bt(t為實(shí)數(shù));⑤點(diǎn),,是該拋物線上的點(diǎn),則y1<y2<y3.其中正確結(jié)論的個(gè)數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接2016年中考,某中學(xué)對(duì)全校九年級(jí)學(xué)生進(jìn)行了一次數(shù)學(xué)模擬考試,并隨機(jī)抽取了部分學(xué)生的測(cè)試成績(jī)作為樣本進(jìn)行分析,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中提供的信息解答下列問(wèn)題:
(1)這次調(diào)査中,一共抽取了多少名學(xué)生?
(2)求樣本中表示成績(jī)?yōu)椤爸小钡娜藬?shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該學(xué)校九年級(jí)共有1000人參加了這次數(shù)學(xué)考試,估計(jì)該校九年級(jí)共有多少名學(xué)生的數(shù)學(xué)成績(jī)可以達(dá)到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,熒光屏上的甲、乙兩個(gè)光斑(可看作點(diǎn))分別從相距8cm的A,B兩點(diǎn)同時(shí)開(kāi)始沿線段AB運(yùn)動(dòng),運(yùn)動(dòng)工程中甲光斑與點(diǎn)A的距離S1(cm)與時(shí)間t(s)的函數(shù)關(guān)系圖象如圖2,乙光斑與點(diǎn)B的距離S2(cm)與時(shí)間t(s)的函數(shù)關(guān)系圖象如圖3,已知甲光斑全程的平均速度為1.5cm/s,且兩圖象中△P1O1Q1≌P2Q2O2,下列敘述正確的是( 。
A. 甲光斑從點(diǎn)A到點(diǎn)B的運(yùn)動(dòng)速度是從點(diǎn)B到點(diǎn)A的運(yùn)動(dòng)速度的4倍
B. 乙光斑從點(diǎn)A到B的運(yùn)動(dòng)速度小于1.5cm/s
C. 甲乙兩光斑全程的平均速度一樣
D. 甲乙兩光斑在運(yùn)動(dòng)過(guò)程中共相遇3次
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是矩形ABCD內(nèi)部的一定點(diǎn),M是AB邊上一動(dòng)點(diǎn),連接MP并延長(zhǎng)與矩形ABCD的一邊交于點(diǎn)N,連接AN.已知AB=6cm,設(shè)A,M兩點(diǎn)間的距離為xcm,M,N兩點(diǎn)間的距離為y1cm,A,N兩點(diǎn)間的距離為y2cm.小欣根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小欣的探究過(guò)程,請(qǐng)補(bǔ)充完整;
(1)按照如表中自變量x的值進(jìn)行取點(diǎn)、畫(huà)圖、測(cè)量,分別得到了y1,y2與x的幾組對(duì)應(yīng)值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 6.30 | 5.40 |
| 4.22 | 3.13 | 3.25 | 4.52 |
y2/cm | 6.30 | 6.34 | 6.43 | 6.69 | 5.75 | 4.81 | 3.98 |
(2)在同一平面直角坐標(biāo)系xOy中,描出以補(bǔ)全后的表中各組對(duì)應(yīng)值所對(duì)應(yīng)的點(diǎn)(x,y1),并畫(huà)出函數(shù)y1的圖象;
(3)結(jié)合函數(shù)圖象,解決問(wèn)題:當(dāng)△AMN為等腰三角形時(shí),AM的長(zhǎng)度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,射線MN表示一艘輪船的航行路線,從M到N的走向?yàn)槟掀珫|30°,在M的南偏東60°方向上有一點(diǎn)A,A處到M處為100海里.
(1)求點(diǎn)A到航線MN的距離;
(2)在航線MN上有一點(diǎn)B,且∠MAB=15°,若輪船的速度為50海里/時(shí),求輪船從M處到B處所用時(shí)間為多少小時(shí)?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l和雙曲線y=(k>0)交于A、B兩點(diǎn),P是線段AB上的點(diǎn)(不與A、B重合),過(guò)點(diǎn)A、B、P分別向x軸作垂線,垂足分別為C、D、E,連接OA、OB、OP,設(shè)△AOC的面積為S1、△BOD的面積為S2、△POE的面積為S3,則( )
A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com