【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直角△AOB的OA邊在x軸上,OB邊在y軸上,且OA=6,OB=8.沿直線AM將△ABM折疊,點(diǎn)B正好落在x軸上,則直線AM的解析式為_____.
【答案】y=﹣x+3
【解析】
設(shè)沿直線AM將△ABM折疊,點(diǎn)B正好落在x軸上的C點(diǎn),則有AB=AC,而AB的長(zhǎng)度根據(jù)已知可以求出,所以C點(diǎn)的坐標(biāo)由此求出;又由于折疊得到CM=BM,在直角△CMO中根據(jù)勾股定理可以求出OM,也就求出M的坐標(biāo),而A的坐標(biāo)已知,由此即可求出直線AM的解析式.
如圖所示,設(shè)沿直線AM將△ABM折疊,點(diǎn)B正好落在x軸上的C點(diǎn),
則有AB=AC,
又OA=6,OB=8,
∴AB=10,
故求得點(diǎn)C的坐標(biāo)為:(﹣4,0).
再設(shè)M點(diǎn)坐標(biāo)為(0,b),
則CM=BM=8﹣b,
∵CM2=CO2+OM2,
∴b=3,
∴M(0,3),而A(6,0),
∴直線AM的解析式為:y=﹣x+3,
故答案為:y=﹣x+3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,AC=CE,連接AE交BC于點(diǎn)D,延長(zhǎng)DC至F點(diǎn),使CF=CD,連接AF.
(1)判斷直線AF與⊙O的位置關(guān)系,并說明理由.
(2)若AC=10,tan∠CAE=,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,
(1)以BD為對(duì)角線,作菱形MBND,使得M、N分別在BA、DC的延長(zhǎng)線上.(保留作圖痕跡,不寫作圖過程)
(2)證明所作四邊形MBND是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)圖象的一個(gè)交點(diǎn)為M(﹣2,m).
(1)求反比例函數(shù)的解析式;
(2)當(dāng)y2>y1時(shí),求x的取值范圍;
(3)求點(diǎn)B到直線OM的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在星期一的第八節(jié)課,我校體育老師隨機(jī)抽取了九年級(jí)的總分學(xué)生進(jìn)行體育中考的模擬測(cè)試,并對(duì)成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,按得分劃分成A、B、C、D、E、F六個(gè)等級(jí),并繪制成如下兩幅不完整的統(tǒng)計(jì)圖表.
等級(jí) | 得分x(分) | 頻數(shù)(人) |
A | 95<x≤100 | 4 |
B | 90<x≤95 | m |
C | 85<x≤90 | n |
D | 80<x≤85 | 24 |
E | 75<x≤80 | 8 |
F | 70<x≤75 | 4 |
請(qǐng)你根據(jù)圖表中的信息完成下列問題:
1)本次抽樣調(diào)查的樣本容量是 .其中m= ,n= .
2)扇形統(tǒng)計(jì)圖中,求E等級(jí)對(duì)應(yīng)扇形的圓心角α的度數(shù);
3)我校九年級(jí)共有700名學(xué)生,估計(jì)體育測(cè)試成績(jī)?cè)?/span>A、B兩個(gè)等級(jí)的人數(shù)共有多少人?
4)我校決定從本次抽取的A等級(jí)學(xué)生(記為甲、乙、丙、。┲,隨機(jī)選擇2名成為學(xué)校代表參加全市體能競(jìng)賽,請(qǐng)你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為改善教學(xué)條件,學(xué)校準(zhǔn)備對(duì)現(xiàn)有多媒體設(shè)備進(jìn)行升級(jí)改造,已知購(gòu)買3個(gè)鍵盤和1個(gè)鼠標(biāo)需要190元;購(gòu)買2個(gè)鍵盤和3個(gè)鼠標(biāo)需要220元;
(1)求鍵盤和鼠標(biāo)的單價(jià)各是多少元?
(2)經(jīng)過與經(jīng)銷商洽談,鍵盤打八折,鼠標(biāo)打八五折.若學(xué)校計(jì)劃購(gòu)買鍵盤和鼠標(biāo)共50件,且總費(fèi)用不超過1820元,則最多可購(gòu)買鍵盤多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點(diǎn),∠ADE=∠C.
(1)求證:△BDE∽△CAD;
(2)若CD=2,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)A(-3,4)、B(-3,0)、C(-1,0) .以D為頂點(diǎn)的拋物線y = ax2+bx+c過點(diǎn)B. 動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿DC邊向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BA邊向點(diǎn)A運(yùn)動(dòng),點(diǎn)P、Q運(yùn)動(dòng)的速度均為每秒1個(gè)單位,運(yùn)動(dòng)的時(shí)間為t秒. 過點(diǎn)P作PE⊥CD交BD于點(diǎn)E,過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.
(1)求拋物線的解析式;
(2)當(dāng)t為何值時(shí),四邊形BDGQ的面積最大?最大值為多少?
(3)動(dòng)點(diǎn)P、Q運(yùn)動(dòng)過程中,在矩形ABCD內(nèi)(包括其邊界)是否存在點(diǎn)H,使以B,Q,E,H為頂點(diǎn)的四邊形是菱形,若存在,請(qǐng)直接寫出此時(shí)菱形的周長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初級(jí)中學(xué)初一、初二、初三三個(gè)年段均有學(xué)生500人,為了解數(shù)學(xué)史知識(shí)的普及情況,按年段以2%的比例隨機(jī)抽樣,然后進(jìn)行模擬測(cè)試,測(cè)試成績(jī)整理如下:
初一年段 | 36 | 55 | 67 | 68 | 75 | 81 | 81 | 85 | 92 | 96 |
初二年段 | 45 | 66 | 72 | 77 | 80 | 84 | 86 | 92 | 95 | 96 |
初三年段 | 55 | 68 | 75 | 84 | 85 | 87 | 93 | 94 | 96 | 97 |
(1)估計(jì)該校學(xué)生數(shù)學(xué)史掌握水平能達(dá)到80分以上(含80分)的人數(shù);
(2)現(xiàn)從樣本成績(jī)?cè)?/span>95分以上(含95分)的學(xué)生中,任取3名參加數(shù)學(xué)史學(xué)習(xí)的經(jīng)驗(yàn)匯報(bào),求各年段恰好都有一名學(xué)生參加的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com