【題目】如圖RtABC中,∠ACB90°,∠B30°,AC1,且AC在直線l上,將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到①,可得到點(diǎn)P1;將位置①的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置②,可得到點(diǎn)P2;將位置②的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置③,可得到點(diǎn)P3按此規(guī)律繼續(xù)旋轉(zhuǎn),直到點(diǎn)P2012為止,則AP2012等于_____

【答案】2012+671

【解析】

觀察發(fā)現(xiàn)將RtABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),每旋轉(zhuǎn)一次,AP的長(zhǎng)度依次增加2,,1,且三次一循環(huán),按此規(guī)律即可求解.

解:∵RtABC中,∠ACB90°,∠B30°,AC1,

AB2,BC,

∴將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到①,可得到點(diǎn)P1,此時(shí)AP12;

將位置①的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置②,可得到點(diǎn)P2,此時(shí)AP22+

將位置②的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置③,可得到點(diǎn)P3,此時(shí)AP32++13+;

又∵2012÷3670…2,

AP20126703++2+2012+671

故答案為2012+671

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分5分)如圖,小明在大樓30米高

(即PH30米)的窗口P處進(jìn)行觀測(cè),測(cè)得山

坡上A處的俯角為15°,山腳B處的俯角為

60°,已知該山坡的坡度i(即tan∠ABC)為1

,點(diǎn)P、H、BC、A在同一個(gè)平面上.點(diǎn)

HB、C在同一條直線上,且PH⊥HC

(1)山坡坡角(即∠ABC)的度數(shù)等于 度;

(2)A、B兩點(diǎn)間的距離(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.732).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,DBC的中點(diǎn),過D點(diǎn)的直線GFACF,交AC的平行線BGG點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF

1)求證:BGCF

2)請(qǐng)你判斷BE+CFEF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A﹣1,0)、C03),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D

1)求此二次函數(shù)解析式;

2)連接DCBC、DB,求證:△BCD是直角三角形;

3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解放橋是天津市的標(biāo)志性建筑之一,是一座全鋼結(jié)構(gòu)的部分可開啟的橋梁,

I)如圖①,已知解放橋可開啟部分的橋面的跨度AB等于47m,從AB的中點(diǎn)C處開啟,則AC開啟至A'C'的位置時(shí),A'C'的長(zhǎng)為 .

II)如圖②,某校數(shù)學(xué)興趣小組要測(cè)量解放橋的全長(zhǎng)PQ,在觀景平臺(tái)M處測(cè)得∠PMQ=54°,沿河岸MQ前行,在觀景平臺(tái)N處測(cè)得∠PNQ=73°。已知PQMQ,MN=40m,求解放橋的全長(zhǎng)PQtan54°≈1.4,tan73°≈3.3,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知拋物線yax2a0)與一次函數(shù)ykx+b的圖象相交于A(﹣1,﹣1),B2,﹣4)兩點(diǎn),點(diǎn)P是拋物線上不與A,B重合的一個(gè)動(dòng)點(diǎn),點(diǎn)Qy軸上的一個(gè)動(dòng)點(diǎn).

1)請(qǐng)直接寫出a,k,b的值及關(guān)于x的不等式ax2kx2的解集;

2)當(dāng)點(diǎn)P在直線AB上方時(shí),請(qǐng)求出△PAB面積的最大值并求出此時(shí)點(diǎn)P的坐標(biāo);

3)是否存在以P,QA,B為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出P,Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖 1,在ABC 中,ACB90°,BCAC,點(diǎn) D AB 上,DEAB BC E,點(diǎn) F AE 的中點(diǎn)

1 寫出線段 FD 與線段 FC 的關(guān)系并證明;

2 如圖 2,將BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)αα90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫出你的結(jié)論并證明;

3 BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)一周,如果 BC4BE2,直接寫出線段 BF 的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點(diǎn)C作直線lAB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.

(1)求∠BAC的度數(shù);

(2)當(dāng)點(diǎn)DAB上方,且CDBP時(shí),求證:PC=AC;

(3)在點(diǎn)P的運(yùn)動(dòng)過程中

①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于一次函數(shù)y5x3的描述,下列說法正確的是(  )

A. 圖象經(jīng)過第一、二、三象限B. 向下平移3個(gè)單位長(zhǎng)度,可得到y5x

C. 函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo)是(0,﹣3)D. 圖象經(jīng)過點(diǎn)(12)

查看答案和解析>>

同步練習(xí)冊(cè)答案