【題目】如圖,已知二次函數(shù)的圖象與軸交于點(diǎn),與軸的交點(diǎn)在和之間(不包括這兩點(diǎn)),對(duì)稱(chēng)軸為直線(xiàn).下列結(jié)論:①;②;③;④;⑤.其中正確的是________.
【答案】①③④⑤
【解析】
①由拋物線(xiàn)的開(kāi)口方向、對(duì)稱(chēng)軸以及與y軸的交點(diǎn),可得出a>0、b<0、c<0,進(jìn)而可得出abc>0,結(jié)論①正確;②由拋物線(xiàn)的對(duì)稱(chēng)軸及點(diǎn)A的坐標(biāo),可得出拋物線(xiàn)與x軸的另一交點(diǎn)坐標(biāo),結(jié)合拋物線(xiàn)的開(kāi)口可得出當(dāng)x=2時(shí),y=4a+2b+c<0,結(jié)論②錯(cuò)誤;③由a>0、b<0、c<0,可得出,結(jié)論③正確;④由當(dāng)x=-1時(shí)y=a-b+c=0,結(jié)合b=-2a可得出3a=-c,再根據(jù)-2<c<-1,即可求出,結(jié)論④正確;⑤由a-b+c=0、a>0,可得出-b+c<0,即b>c,結(jié)論⑤正確.綜上即可得出結(jié)論.
①∵拋物線(xiàn)開(kāi)口向上,對(duì)稱(chēng)軸為直線(xiàn)x=1,與y軸的交點(diǎn)在(0,2)和(0,1)之間,
∴a>0, ,2<c<1,
∴b<0,abc>0,結(jié)論①正確;
②∵拋物線(xiàn)與x軸交于點(diǎn)A(1,0),對(duì)稱(chēng)軸為直線(xiàn)x=1,
∴拋物線(xiàn)與x軸的另一交點(diǎn)坐標(biāo)為(3,0),
∴當(dāng)x=2時(shí),y=4a+2b+c<0,結(jié)論②錯(cuò)誤;
③∵a>0,b<0,c<0,
∴4ac<0, >0,
∴,結(jié)論③正確;
④當(dāng)x=1時(shí),y=ab+c=0,
∴ab=c.
∵b=2a,
∴3a=c.
又∵2<c<1,
∴,結(jié)論④正確;
⑤∵當(dāng)x=1時(shí),y=ab+c=0,a>0,
∴b+c<0,
∴b>c,結(jié)論⑤正確。
綜上所述:正確的結(jié)論有①③④⑤.
故答案為:①③④⑤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=﹣x2+bx+c(其中b,c是常數(shù))
(1)四位同學(xué)在研究此函數(shù)時(shí),甲發(fā)現(xiàn)當(dāng)x=0時(shí),y=5;乙發(fā)現(xiàn)函數(shù)的最大值為9;丙發(fā)現(xiàn)函數(shù)圖象的對(duì)稱(chēng)軸是直線(xiàn)x=2;丁發(fā)現(xiàn)4是方程﹣x2+bx+c=0的一個(gè)根.已知這四位同學(xué)中只有一位發(fā)現(xiàn)的結(jié)論是錯(cuò)誤的,請(qǐng)直接寫(xiě)出錯(cuò)誤的那個(gè)人是誰(shuí),并求出此函數(shù)表達(dá)式;
(2)在(1)的條件下,函數(shù)y=﹣x2+bx+c的圖象頂點(diǎn)為A,與x軸正半軸交點(diǎn)為B,與y軸的交點(diǎn)為C,若將該圖象向下平移m(m>0)個(gè)單位,使平移后得到的二次函數(shù)圖象的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)若c=b2,當(dāng)﹣2≤x≤0時(shí),函數(shù)y=﹣x2+bx+c的最大值為5,求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對(duì)稱(chēng)軸x=﹣1,給出下列結(jié)果:①b2>4ac;②abc>0;③2a+b=0;④a﹣b+c<0;⑤3a+c>0.其中正確結(jié)論的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:直線(xiàn)y=x﹣3與x軸、y軸分別交于點(diǎn)A、B,拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)點(diǎn)A、B,且交x軸于點(diǎn)C.
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)P為拋物線(xiàn)上一點(diǎn),且點(diǎn)P在AB的下方,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①試求當(dāng)m為何值時(shí),△PAB的面積最大;
②當(dāng)△PAB的面積最大時(shí),過(guò)點(diǎn)P作x軸的垂線(xiàn)PD,垂足為點(diǎn)D,問(wèn)在直線(xiàn)PD上否存在點(diǎn)Q,使△QBC為直角三角形?若存在,直接寫(xiě)出符合條件的Q的坐標(biāo)若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校門(mén)口豎著“前方學(xué)校,減速慢行”的交通指示牌CD,數(shù)學(xué)“綜合與實(shí)踐”小組的同學(xué)將“測(cè)量交通指示牌CD的高度”作為一項(xiàng)課題活動(dòng),他們定好了如下測(cè)量方案:
項(xiàng)目 | 內(nèi)容 |
課題 | 測(cè)量交通指示牌CD的高度 |
測(cè)量示意圖 | |
測(cè)量步驟 | (1)從交通指示牌下的點(diǎn)M處出發(fā)向前走10 米到達(dá)A處; (2)在點(diǎn)A處用量角儀測(cè)得∠DAM=27°; (3)從點(diǎn)A沿直線(xiàn)MA向前走10米到達(dá)B處;(4)在點(diǎn)B處用量角儀測(cè)得∠CBA=18°. |
請(qǐng)你幫助該小組同學(xué)根據(jù)上表中的測(cè)量數(shù)據(jù),求出交通指示牌CD的高度.(參考數(shù)據(jù)sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知二次函數(shù)經(jīng)過(guò)點(diǎn)B(3,0),C(0,3),D(4,-5)
(1)求拋物線(xiàn)的解析式;
(2)求△ABC的面積;
(3)若P是拋物線(xiàn)上一點(diǎn),且S△ABP=S△ABC,這樣的點(diǎn)P有幾個(gè)請(qǐng)直接寫(xiě)出它們的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用黑白棋子擺出下列一組圖形,根據(jù)規(guī)律可知.
(1)在第n個(gè)圖中,白棋共有 枚,黑棋共有 枚;
(2)在第幾個(gè)圖形中,白棋共有300枚;
(3)白棋的個(gè)數(shù)能否與黑棋的個(gè)數(shù)相等?若能,求出是第幾個(gè)圖形,若不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020春節(jié)期間,為了進(jìn)一步做好新型冠狀病毒感染的肺炎疫情防控工作,防止新型肺炎外傳,切斷傳播途徑.項(xiàng)城市市區(qū)各入口一些主要路段均設(shè)立了檢測(cè)點(diǎn),對(duì)出入人員進(jìn)行登記和體溫檢測(cè)。下圖為一關(guān)口的警示牌,已知立桿AB高度是3m,從側(cè)面D點(diǎn)測(cè)得顯示牌頂端C點(diǎn)和底端B點(diǎn)的仰角分別是60°和45°.求警示牌BC的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),另一動(dòng)點(diǎn)N同時(shí)從點(diǎn)B出發(fā),以1cm/s的速度沿著邊BA向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),設(shè)點(diǎn)M運(yùn)動(dòng)時(shí)間為x(s),△AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com