【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=3,點E、F分別在AC,AB上,連接EF.

1)將△ABC沿EF折疊,使點A落在AB邊上的點D處,如圖1,若S四邊形ECBD=2SEDF,求AE的長;

2)將△ABC沿EF折疊,使點A落在BC邊上的點M處,如圖2,若MFCB.

①求AE的長;②求四邊形AEMF的面積;

3)若點E在射線AC上,點F在邊AB上,點A關(guān)于EF所在直線的對稱點為點P,問:是否存在以PF、CB為對邊的平行四邊形,若存在,求出AE的長;若不存在,請說明理由.

【答案】1;(2)①,②;(36.理由見解析.

【解析】

1)先判斷出SABC=4SAEF,再求出AB,判斷出RtAEFRtABC,得出 ,代值即可得出結(jié)論;

2)先判斷出四邊形AEMF是菱形,再判斷出△CME∽△CBA得出比例式,代值即可得出結(jié)論;

3)分兩種情況,利用平行四邊形的性質(zhì),對邊平行且相等,最后用勾股定理即可得出結(jié)論.

1)∵△ABC沿EF折疊,折疊后點A落在AB上的點D處,

EFAB,△AEF≌△DEF

SAEF=SDEF,

S四邊形ECBD=2SEDF,

SABC=4SAEF

RtABC中,∵∠ACB=90°,AC=4,BC=3

AB=5,

EFAB

∴∠AFE=ACB,

RtAEF∽△RtABC,

,

即:,

;

2)①∵△ABC沿EF折疊,折疊后點A落在AB邊上的點M處,

AE=MEAF=MF,∠AFE=MFE

∴∠AEF=AFE,∴AE=AF,

AE=EM=MF=AF

∴四邊形AEMF是菱形,

設(shè)AE=x,則EM=x,CE=4x,

∵四邊形AEMF是菱形,

EMAB,

∴△CME∽△CBA

,

,

,

即:,

②由①知,,

;

3)①如圖3,當(dāng)點E在線段AC上時,∵PFCB是平行四邊形的對邊,

PF//CB,PF=CB,由對稱性知,PF=AF,AE=PE,

PF=AF=BC=3,

設(shè)AE=PE=a,

PFCB

∴△AOF∽△ACB,∠AOF=ACB=90°,

,

,

,

,,

RtOPE中,,

,

即:;

②如圖4,當(dāng)點E在線段AC的延長線上時,延長PFACO,

同理:,

RtOPE中,,

,

,

,

即:6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC△DEF的頂點都在格點上,請解答下列問題:

(1) 畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的圖形△A1B1C1,A、B、C的對應(yīng)點分別是A1、B1、C1

(2) 設(shè)(1)中的線段A A1與線段B B1的長分別為ab,則___________

(3) △A1B1C1△DEF關(guān)于某點對稱,請直接寫出它們對稱中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC,點PABC內(nèi)一點,∠APB=∠BAC120°.若APBP4,則PC的最小值為(

A. 2B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果商從批發(fā)市場用8000元購進了大櫻桃和小櫻桃各200千克,大櫻桃的進價比小櫻桃的進價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.

(1)大櫻桃和小櫻桃的進價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?

(2)該水果商第二次仍用8000元錢從批發(fā)市場購進了大櫻桃和小櫻桃各200千克,進價不變,但在運輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機.為了解學(xué)生手機使用情況,某學(xué)校開展了手機伴我健康行主題活動,他們隨機抽取部分學(xué)生進行使用手機目的每周使用手機的時間的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計圖,已知查資料的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:

(1)在扇形統(tǒng)計圖中,玩游戲對應(yīng)的百分比為______,圓心角度數(shù)是______度;

(2)補全條形統(tǒng)計圖;

(3)該校共有學(xué)生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,A=30°,AB=4,動點P從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運動.過點PPDAC于點D(點P不與點A、B重合),作∠DPQ=60°,邊PQ交射線DC于點Q.設(shè)點P的運動時間為t秒.

(1)用含t的代數(shù)式表示線段DC的長;

(2)當(dāng)點Q與點C重合時,求t的值;

(3)設(shè)△PDQ與△ABC重疊部分圖形的面積為S,求St之間的函數(shù)關(guān)系式;

(4)當(dāng)線段PQ的垂直平分線經(jīng)過△ABC一邊中點時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B1cm/s的速度移動,點Q從點B開始沿BC邊向點C2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,BC=10cm、DC=6cm,點E、F分別為邊AB、BC上的兩個動點,E從點A出發(fā)以每秒5cm的速度向B運動,F從點B出發(fā)以每秒3cm的速度向C運動,設(shè)運動時間為t秒.若∠AFD=AED,則t的值為( 。

A. B. 0.5C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△OAB繞點O逆時針旋轉(zhuǎn)80°得到△OCD,點A與點C是對應(yīng)點.

(1)畫出△OAB關(guān)于點O對稱的圖形(保留畫圖痕跡,不寫畫法);

(2)若∠A=110°,∠D=40°,求∠AOD的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案