【題目】如圖,E是ABCD的邊CD的中點,延長AE交BC的延長線于點F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長.
【答案】
(1)
證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴∠DAE=∠F,∠D=∠ECF,
∵E是ABCD的邊CD的中點,
∴DE=CE,
在△ADE和△FCE中,
,
∴△ADE≌△FCE(AAS)
(2)
解:∵ADE≌△FCE,
∴AE=EF=3,
∵AB∥CD,
∴∠AED=∠BAF=90°,
在ABCD中,AD=BC=5,
∴DE= = =4,
∴CD=2DE=8
【解析】(1)由平行四邊形的性質得出AD∥BC,AB∥CD,證出∠DAE=∠F,∠D=∠ECF,由AAS證明△ADE≌△FCE即可;
。2)由全等三角形的性質得出AE=EF=3,由平行線的性質證出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的長.此題考查了平行四邊形的性質、全等三角形的判定方法、勾股定理;熟練掌握平行四邊形的性質,證明三角形全等是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】AB為⊙O直徑,BC為⊙O切線,切點為B,CO平行于弦AD,作直線DC.
①求證:DC為⊙O切線;
②若ADOC=8,求⊙O半徑r.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從﹣1,0,1,3,4,這五個數(shù)中任選一個數(shù)記為a,則使雙曲線y= 在第一、三象限且不等式組 無解的概率是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】同學們,足球是世界上第一大運動,你熱愛足球運動嗎?已知在足球比賽中,勝一場得3分,平一場得1分,負一場得0分,一隊共踢了30場比賽,負了9場,共得47分,那么這個隊勝了( 。
A. 10場 B. 11場 C. 12場 D. 13場
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點M沿路線O→A→C運動.
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當△OMC的面積是△OAC的面積的時,求出這時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下是兩張不同類型火車的車票(“次”表示動車,“次”表示高鐵):
(1)根據(jù)車票中的信息填空:該列動車和高鐵是__________向而行(填“相”或“同”).
(2)已知該列動車和高鐵的平均速度分別為、,兩列火車的長度不計.
①經(jīng)過測算,如果兩列火車直達終點(即中途都不停靠任何站點),高鐵比動車將早到,求、兩地之間的距離.
②在①中測算的數(shù)據(jù)基礎上,已知、兩地途中依次設有個站點、、、、,且,動車每個站點都?,高鐵只?、兩個站點,兩列火車在每個?空军c都停留.求該列高鐵追上動車的時刻.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若點A、B、C在數(shù)軸上對應的數(shù)分別為a、b、c滿足|a+5|+|b-1|+|c-2|=0.
(1)在數(shù)軸上是否存在點P,使得PA+PB=PC?若存在,求出點P對應的數(shù);若不存在,請說明理由;
(2)若點A,B,C同時開始在數(shù)軸上分別以每秒1個單位長度,每秒3個單位長度,每秒5個單位長度沿著數(shù)軸負方向運動.經(jīng)過t(t≥1)秒后,試問AB-BC的值是否會隨著時間t的變化而變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一次數(shù)學活動課上,張明用17個邊長為1的小正方形搭成了一個幾何體,然后他請王亮用其他同樣的小正方體在旁邊再搭一個幾何體,使王亮所搭幾何體恰好可以和張明所搭幾何體拼成一個無縫隙的大長方體(不改變張明所搭幾何體的形狀),那么王亮至少還需要個小立方體,王亮所搭幾何體的表面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com