【題目】如圖,點C,P均在⊙O上,且分布在直徑AB的兩側(cè),BE⊥CP于點E.

(1)求證:△CAB∽△EPB;
(2)若AB=10,AC=6,BP=5,求CP的長.

【答案】
(1)證明:∵AB是⊙O的直徑,BE⊥CP,

∴∠ACB=∠BEP.

∵∠CAB=∠BPC,

∴△CAB∽△EPB


(2)解:∵AB=10,AC=6,

∴BC= =8.

∵△CAB∽△EPB,BP=5,

= = ,即 = = ,

∴PE=3,BE=4,

∴CE= =4 ,

∴CP=4 +3


【解析】(1)根據(jù)兩角相等的三角形相似可得出結(jié)論;(2)先根據(jù)勾股定理求出BC的長,再由相似三角形的性質(zhì)得出PE及BE的長,由勾股定理得出CE的長,進而可得出結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解圓周角定理的相關(guān)知識,掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半,以及對相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地電話撥號上網(wǎng)有兩種收費方式,用戶可以任選其一:(A)計時制,0.05元∕分;(B)包月制,50元∕分(限一部個人住宅電話上網(wǎng));此外,每種上網(wǎng)方式都附加通信費0.02元∕分。

(1)某用戶某月上網(wǎng)時間為x分鐘,則該用戶在A、B兩種收費方式下應(yīng)支付費用各多少元?

(2)如果一個月內(nèi)上網(wǎng)200分鐘和300分鐘,按兩種收費方式各需交費多少元?

(3)是否存在某一時間,會出現(xiàn)兩種收費方式一樣的情況嗎?求出這時的上網(wǎng)時間?

(4)如果某人一個月上網(wǎng)20小時,那么應(yīng)選用哪一種方式較為合算?如果小明的媽媽準(zhǔn)備辦理這種業(yè)務(wù),你能告訴她如何選擇更加合算嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩個村莊的坐標(biāo)分別為(2,2)、(7,4),一輛汽車從原點O出發(fā),在x軸上行駛.

(1)汽車行駛到什么位置時離村莊A最近?寫出此位置的坐標(biāo).

(2)汽車行駛到什么位置時離村莊B最近?寫出此位置的坐標(biāo).

(3)請在圖中畫出汽車到兩村莊的距離和最短的位置,并求出此最短的距離和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=k1xb與雙曲線y相交于A(1,2)、B(m,-1)兩點

(1)求直線和雙曲線的解析式;

(2)A1(x1y1)、A2(x2y2)、A3(x3,y3)為雙曲線上的三點,x1x2<0<x3,請直接寫出y1、y2、y3的大小關(guān)系式

(3)觀察圖象,請直接寫出不等式k1xb的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D處.若AB=3,AD=4,則ED的長為(  )

A. B. 3 C. 1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的解題過程:

計算:5÷(-2-2)×6.

解:5÷(-2-2)×6

=5÷(-)×6…………

=5÷(-25)…………

=-.…………

回答:(1)上面的解題過程是從第________步開始出現(xiàn)錯誤的,錯誤的原因是___________________________________________________;

(2)請你給出正確的解題過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“今有邑,東西七里,南北九里,各開中門,出東門一十五里有木,問:出南門幾何步而見木?”這段話摘自《九章算術(shù)》,意思是說:如圖,矩形城池ABCD,東邊城墻AB長9里,南邊城墻AD長7里,東門點E、南門點F分別是AB,AD的中點,EG⊥AB,F(xiàn)H⊥AD,EG=15里,HG經(jīng)過A點,則FH=里.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,請在下列四個關(guān)系中,選出兩個恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)

關(guān)系:①ADBC,AB=CD,③∠A=C④∠B+C=180°.

已知:在四邊形ABCD中,            ;

求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(4,﹣ ),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).

(1)求拋物線的解析式及A、B兩點的坐標(biāo);
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最。咳舸嬖,求AP+CP的最小值,若不存在,請說明理由;
(3)以AB為直徑的⊙M相切于點E,CE交x軸于點D,求直線CE的解析式.

查看答案和解析>>

同步練習(xí)冊答案