【題目】拋物線y=ax2+bx+c的對稱軸是直線x=﹣2.拋物線與x軸的一個交點在點(﹣4,0)和點(﹣3,0)之間,其部分圖象如圖所示,下列結(jié)論中正確的個數(shù)有( )①4a﹣b=0;②c≤3a;③關于x的方程ax2+bx+c=2有兩個不相等實數(shù)根;④b2+2b>4ac.
A.1個B.2個C.3個D.4個
【答案】C
【解析】
①由對稱軸即可判斷;
②將c≤3a轉(zhuǎn)化為時所對應的函數(shù)值,由對稱性轉(zhuǎn)化為時所對應的函數(shù)值,即可判斷;
③根據(jù)圖象所體現(xiàn)的最大值即可判斷;
④根據(jù)圖象的最值結(jié)合對稱軸即可判斷.
①因為對稱軸為,所以,即,故①正確;
②由①知,所以時,;
因為拋物線與x軸的一個交點在點(﹣4,0)和點(﹣3,0)之間,所以時,
又因為與關于拋物線的對稱軸對稱,所以,即,故②錯誤;
③由圖可知y=ax2+bx+c的最大值為3,所以當ax2+bx+c=2時有兩個不相等的實數(shù)根;故③正確;
④由圖可知:,即,
又且,所以=,
所以,即,故④正確;
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0)、點B(3,0)、點C(4,y1),若點D(x2,y2)是拋物線上任意一點,有下列結(jié)論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個根為﹣1和
其中正確結(jié)論的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過,,三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點,使的值最小,求點的坐標;
(3)點為軸上一動點,在拋物線上是否存在一點,使以,,,四點構成的四邊形為平行四邊形?若存在,求點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,直線(k為常數(shù))與拋物線交于A,B兩點,且A點在軸右側(cè),P點的坐標為(0,4)連接PA,PB.(1)△PAB的面積的最小值為____;(2)當時,=_______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】遵義市各校都在深入開展勞動教育,某校為了解七年級學生一學期參加課外勞動時間(單位:h)的情況,從該校七年級隨機抽查了部分學生進行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
課外勞動時間頻數(shù)分布表
勞動時間分組 | 頻數(shù) | 頻率 |
0≤t<20 | 2 | 0.1 |
20≤t<40 | 4 | m |
40≤t<60 | 6 | 0.3 |
60≤t<80 | a | 0.25 |
80≤t<100 | 3 | 0.15 |
解答下列問題:
(1)頻數(shù)分布表中a= ,m= ;將頻數(shù)分布直方圖補充完整;
(2)若七年級共有學生400人,試估計該校七年級學生一學期課外勞動時間不少于60h的人數(shù);
(3)已知課外勞動時間在60h≤t<80h的男生人數(shù)為2人,其余為女生,現(xiàn)從該組中任選2人代表學校參加“全市中學生勞動體驗”演講比賽,請用樹狀圖或列表法求所選學生為1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設函數(shù)y1=,y2=﹣(k>0).
(1)當2≤x≤3時,函數(shù)y1的最大值是a,函數(shù)y2的最小值是a﹣4,求a和k的值.
(2)設m≠0,且m≠﹣1,當x=m時,y1=p;當x=m+1時,y1=q.圓圓說:“p一定大于q”.你認為圓圓的說法正確嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接三角形,AB為⊙O的直徑,將△ABC沿直線AB折疊得到△ABD,交⊙O于點D.連接CD交AB于點E,延長BD和CA相交于點P,過點A作AG∥CD交BP于點G.
(1)求證:直線GA是⊙O的切線;
(2)求證:AC2=GDBD;
(3)若tan∠AGB=,PG=6,求cos∠P的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在全球關注的抗擊“新冠肺炎”中某跨國科研中心的一個團隊研制了一種助治“新冠附炎”的新藥,在試驗藥效時發(fā)現(xiàn),如果成人按規(guī)定的制量服用,那么服藥后2小時血液中含藥量最高,達每毫升8微克(1微克=毫克),接著逐步安減,10小時時血液中含藥最為每毫升3微克,每毫升血液中含藥量(微克)隨時間(小時)的變化如圖所示.
(1)分別求線段所表示的函數(shù)關系式;
(2)如果每毫升血液中含藥量為4微克或4微克以上時對治病是有效的,那么這個有效時間是多長?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com