【題目】如圖所示,某公司有三個住宅區(qū),A、BC各區(qū)分別住有職工30人,15人,10人,且這三點在一條大道上(A,BC三點共線),已知AB100米,BC200米.為了方便職工上下班,該公司的接送車打算在此間只設(shè)一個?奎c,為使所有的人步行到?奎c的路程之和最小,那么該?奎c的位置應(yīng)設(shè)在(  )

A. AB. BC. A,B之間D. B,C之間

【答案】A

【解析】

此題為數(shù)學(xué)知識的應(yīng)用,由題意設(shè)一個?奎c,為使所有的人步行到?奎c的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點間線段最短定理.

解:①以點A為?奎c,則所有人的路程的和=15×100+10×3004500(米),

②以點B為?奎c,則所有人的路程的和=30×100+10×2005000(米),

③以點C為停靠點,則所有人的路程的和=30×300+15×20012000(米),

④當(dāng)在AB之間停靠時,設(shè)停靠點到A的距離是m,則(0m100),則所有人的路程的和是:30m+15100m+10300m)=4500+5m4500,

⑤當(dāng)在BC之間停靠時,設(shè)停靠點到B的距離為n,則(0n200),則總路程為30100+n+15n+10200n)=5000+35n4500

∴該?奎c的位置應(yīng)設(shè)在點A

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形AOCB的頂點O、A的坐標(biāo)分別是(0,0)、(0a),且滿足 DAB上一點, M,N垂直平分OD,分別交AB,ODOC于點M,E,N,連接OM,DN

1)填空:a =

2)求證:四邊形MOND是菱形;

3)若FOA的中點,連接EF,且滿足EF+OE=9,求四邊形MOND的周長和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市在招商引資期間,把已經(jīng)破產(chǎn)的油泵廠出租給外地某投資商,該投資商為了減少固定資產(chǎn)投資,將原來400平方米的正方形場地建成300平方米的長方形場地,并且長、寬的比為5:3,并且把原來的正方形鐵柵欄圍墻全部利用,圍成新場地的長方形圍墻,請問這些鐵柵欄是否夠用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程的兩個解是

(1)求的值;

(2)用含有的代數(shù)式表示;

(3)若是不小于的負(fù)數(shù),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個古代車輪的碎片,小明為求其外圓半徑,連接外圓上的兩點A、B,并使AB與車輪內(nèi)圓相切于點D,半徑為OC⊥AB交外圓于點C.測得CD=10cm,AB=60cm,則這個車輪的外圓半徑是( )

A.10cm
B.30cm
C.60cm
D.50cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副直角三角板按如圖1 擺放在直線AD 上(直角三角板OBC 和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC 不動,將三角板MON 繞點O 以每秒8°的速度順時針方向旋轉(zhuǎn)t 秒.

(1)如圖2,當(dāng)t=   秒時,OM 平分∠AOC,此時∠NOC﹣∠AOM= ;

(2)繼續(xù)旋轉(zhuǎn)三角板MON,如圖3,使得OM、ON 同時在直線OC 的右側(cè),猜想∠NOC與∠AOM 有怎樣的數(shù)量關(guān)系?并說明理由(數(shù)量關(guān)系中不能含t);

(3)直線AD 的位置不變,若在三角板MON 開始順時針旋轉(zhuǎn)的同時,另一個三角板OBC也繞點O 以每秒2°的速度順時針旋轉(zhuǎn),當(dāng)OM 旋轉(zhuǎn)至射線OD 上時,兩個三角板同時停止運(yùn)動.

①當(dāng)t= 秒時,∠MOC=15°;

②請直接寫出在旋轉(zhuǎn)過程中,∠NOC 與∠AOM 的數(shù)量關(guān)系(數(shù)量關(guān)系中不能含t).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB中,∠O=90°,AO=8cm,BO=6cm,點C從A點出發(fā),在邊AO上以4cm/s的速度向O點運(yùn)動,與此同時,點D從點B出發(fā),在邊BO上以3cm/s的速度向O點運(yùn)動,過OC的中點E作CD的垂線EF,則當(dāng)點C運(yùn)動了 s時,以C點為圓心,2cm為半徑的圓與直線EF相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級學(xué)生小聰和小明完成了數(shù)學(xué)實驗《鐘面上的數(shù)學(xué)》之后,自制了一個模擬鐘面,如圖所示,O為模擬鐘面圓心,M、O、N在一條直線上,指針OA、OB分別從OM、ON出發(fā)繞點O轉(zhuǎn)動,OA運(yùn)動速度為每秒15°,OB運(yùn)動速度為每秒5°,當(dāng)一根指針與起始位置重合時,運(yùn)動停止,設(shè)轉(zhuǎn)動的時間為t秒,請你試著解決他們提出的下列問題:

(1)OA順時針轉(zhuǎn)動,OB逆時針轉(zhuǎn)動,t=   秒時,OAOB第一次重合;

(2)若它們同時順時針轉(zhuǎn)動,

當(dāng) t=2秒時,∠AOB=   °;

當(dāng)t為何值時,OAOB第一次重合?

當(dāng)t為何值時,∠AOB=30°?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,并回答問題

如圖,有一根木棒 MN 放置在數(shù)軸上,它的兩端 M、N 分別落在點 A、B.將木 棒在數(shù)軸上水平移動,當(dāng)點 M 移動到點 B 時,點 N 所對應(yīng)的數(shù)為 20,當(dāng)點 N 移動到點 A 時,點 M 所對應(yīng)的數(shù)為 5(單位:cm

由此可得,木棒長為 cm借助上述方法解決問題:

一天,美羊羊去問村長爺爺?shù)哪挲g,村長爺爺說:我若是你現(xiàn)在這么大,你還 40 年才出生呢,你若是我現(xiàn)在這么大我已經(jīng)是老壽星了,116 歲了哈哈!美羊羊納悶,村長爺爺?shù)降资嵌嗌贇q? 請你畫出示意圖,求出村長爺爺和美羊羊現(xiàn)在的年齡,并說明解題思路.

查看答案和解析>>

同步練習(xí)冊答案