【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在(3,0)和(4,0)之間,則下列結(jié)論:
①ac
②a﹣b+c>0;
③當(dāng)時(shí),y隨x的增大而增大
若(﹣,y1),(,y2)是拋物線上的兩點(diǎn),則y1y2;
④一元二次方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】試題解析::∵拋物線的對(duì)稱軸為直線x=1,拋物線與x軸的一個(gè)交點(diǎn)在(3,0)和(4,0)之間,
∴拋物線與x軸的一個(gè)交點(diǎn)在(-2,0)和(-1,0)之間,
∴x=-1時(shí),y>0,
即a-b+c>0,所以①正確;
∵拋物線的對(duì)稱軸為x=-=1,
∴b=-2a,
∴3a+b=3a-2a=a≠0,所以②錯(cuò)誤;
∵點(diǎn)(-,y1)到直線x=1的距離比點(diǎn)(,y2)到直線x=1的距離大,
而拋物線開口向下,
∴y1<y2,所以③正確;
∵x=1時(shí),y有最大值為n,
∴拋物線與直線y=n-1有兩個(gè)交點(diǎn),
∴一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根,所以④正確.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF.
①求證:BE+CF>EF.
②若∠A=90°,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明;
(2)如圖(2),在四邊形ABCD中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點(diǎn)作一個(gè)60°角,角的兩邊分別交AB、AC于E、F兩點(diǎn),連接EF,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:如圖1,若點(diǎn)P是⊙O外的一點(diǎn),線段PO交⊙O于點(diǎn)A,則PA長(zhǎng)是點(diǎn)P與⊙O上各點(diǎn)之間的最短距離.
證明:延長(zhǎng)PO交⊙O于點(diǎn)B,顯然PB>PA.
如圖2,在⊙O上任取一點(diǎn)C(與點(diǎn)A,B不重合),連結(jié)PC,OC.
∵PO<PC+OC,
且PO=PA+OA,OA=OC,
∴PA<PC
∴PA 長(zhǎng)是點(diǎn)P與⊙O上各點(diǎn)之間的最短距離.
由此可以得到真命題:圓外一點(diǎn)與圓上各點(diǎn)之間的最短距離是這點(diǎn)到圓心的距離與半徑的差.請(qǐng)用上述真命題解決下列問題.
(1)如圖3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC為直徑的半圓交AB于D,P是 上的一個(gè)動(dòng)點(diǎn),連接AP,則AP長(zhǎng)的最小值是 .
(2)如圖4,在邊長(zhǎng)為2的菱形ABCD中,∠A=60°,M是AD邊的中點(diǎn),點(diǎn)N是AB邊上一動(dòng)點(diǎn),將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,①求線段A’M的長(zhǎng)度; ②求線段A′C長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級(jí)男生的體能情況,體育老師隨機(jī)抽取部分男生進(jìn)行引體向上測(cè)試,并對(duì)成績(jī)進(jìn)行了統(tǒng)計(jì),繪制成圖1和圖2兩幅尚不完整的統(tǒng)計(jì)圖.
(1)本次抽測(cè)的男生有 人,抽測(cè)成績(jī)的中位數(shù)是 ;
(2)請(qǐng)你將圖2的統(tǒng)計(jì)圖補(bǔ)充完整,這部分男生的平均成績(jī)約為多少?寫出計(jì)算過程.
(3)若規(guī)定引體向上5次以上(含5次)為體能達(dá)標(biāo),則該校350名九年級(jí)男生中估計(jì)有多少人體能達(dá)標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、D、C、F在同一直線上,AB=DE,AD=CF,添加下列條件后,仍不能判斷△ABC≌△DEF的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABE中,E 90,AC 是BAE的角平分線。
(1)若B 30,求BAC的度數(shù);
(2)若 D 是BC的中點(diǎn),△ABC的面積為24,CD3,求AE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料并回答下列問題:
在平面直角坐標(biāo)系 xOy 中, 點(diǎn) P x, y 經(jīng)過 f 變換得到點(diǎn) P x, y , 變換記作f x, y x, y, 其中,例如,當(dāng)a=1,b=1時(shí),則點(diǎn)(-1,2)經(jīng)過f變換,,即.
(1)當(dāng) a 1, b 1時(shí),則 f 0, 1 .
(2)若 f 2,3 4, 2 ,求 a 和b 的值.
(3)若象限內(nèi)點(diǎn) P x, y 的橫縱坐標(biāo)滿足 y 3x ,點(diǎn) P 經(jīng)過 f 變換得到點(diǎn) P x, y,若點(diǎn) P 與點(diǎn) P重合,求 a 和b 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18 ℃的條件下生長(zhǎng)最快的新品種.如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線y=的一部分.請(qǐng)根據(jù)圖中信息解答下列問題:
(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18 ℃的時(shí)間有多少小時(shí)?
(2)求k的值;
(3)當(dāng)x=16時(shí),大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:
①四邊形CFHE是菱形;②線段BF的取值范圍為3≤BF≤4;
③EC平分∠DCH;④當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=.
以上結(jié)論中,你認(rèn)為正確的有______.(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com