如圖,AD為⊙O的直徑,∠ABC=75°,且AC=BC,則∠BED=          °
135°.

試題分析:由AD為⊙O的直徑,∠ABC=75°,且AC=BC,可求得∠ABD=90°,∠D=∠C=30°,繼而可得∠CBD=15°,由三角形內(nèi)角和定理,即可求得答案.
∵AD為⊙O的直徑,
∴∠ABD=90°,
∵AC=BC,∠ABC=75°,
∴∠BAC=∠ABC=75°,
∴∠C=180°-∠ABC-∠BAC=30°,∠CBD=∠ABD-∠ABC=15°,
∴∠D=∠C=30°,
∴∠BED=180°-∠CBD-∠D=135°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在⊙O中,直徑AB⊥CD,垂足為E,點(diǎn)M在OC上,AM的延長(zhǎng)線交⊙O于點(diǎn)G,交過(guò)C的直線于F,∠1=∠2,連結(jié)CB與DG交于點(diǎn)N.
(1)求證:CF是⊙O的切線;
(2)求證:△ACM∽△DCN;
(3)若點(diǎn)M是CO的中點(diǎn),⊙O的半徑為4,cos∠BOC=,求BN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖△ABC中,AB=AC,AE⊥BC,E為垂足,F(xiàn)為AB上一點(diǎn).以BF為直徑的圓與AE相切于M點(diǎn),交BC于G點(diǎn).
(1)求證:BM平分∠ABC;
(2)當(dāng)BC=4,cosC=時(shí),
①求⊙O的半徑;
②求圖中陰影部分的面積.(結(jié)果保留π與根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,CA、CB為⊙O的切線,切點(diǎn)分別為A、B.直徑延長(zhǎng)AD與CB的延長(zhǎng)線交于點(diǎn)E.AB、CO交于點(diǎn)M,連接OB.
(1)求證:∠ABO=∠ACB;
(2)若sin∠EAB=,CB=12,求⊙O 的半徑及的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABC的頂點(diǎn)A、B、C、均在⊙O上,若∠ABC+∠AOC=90°,則∠AOC的大小是(  )

A.30°         B.45°              C.60°           D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,以等邊三角形ABC的BC邊為直徑畫(huà)半圓,分別交AB、AC于點(diǎn)E、D,DF是圓的切線,過(guò)點(diǎn)F作BC的垂線交BC于點(diǎn)G.若AF的長(zhǎng)為2,則FG的長(zhǎng)為

A.4          B.6             C.            D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.在線段BC、CD上有動(dòng)點(diǎn)F、E,點(diǎn)F以每秒2cm的速度,在線段BC上從點(diǎn)B向點(diǎn)C勻速運(yùn)動(dòng);同時(shí)點(diǎn)E以每秒1cm的速度,在線段CD上從點(diǎn)C向點(diǎn)D勻速運(yùn)動(dòng).當(dāng)點(diǎn)F到達(dá)點(diǎn)C時(shí),點(diǎn)E同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)F運(yùn)動(dòng)的時(shí)間為t(秒).
(1)求AD的長(zhǎng);
(2)設(shè)四邊形BFED的面積為y,求y 關(guān)于t的函數(shù)關(guān)系式并寫(xiě)出自變量的取值范圍
(3)當(dāng)t為何的值時(shí),以EE為半徑的⊙F與CD邊只有一個(gè)公共點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)在圖①的半徑為R的半圓O內(nèi)(含。蟪鲆贿吢湓谥睆組N上的最大的正三角形的面積?
(2)在圖②的半徑為R的半圓O內(nèi)(含。蟪鲆贿吢湓谥睆組N上的最大的正方形的面積?
問(wèn)題解決
(3)如圖③,現(xiàn)有一塊半徑R=6的半圓形鋼板,是否可以裁出一邊落在MN上的面積最大的矩形?若存在,請(qǐng)說(shuō)明理由,并求出這個(gè)矩形的面積;若不存在,說(shuō)明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知⊙的半徑為1cm,⊙的半徑為3cm,兩圓的圓心距為4cm,則兩圓的位置關(guān)系是(  )
A.外離B.外切C.相交D.內(nèi)切

查看答案和解析>>

同步練習(xí)冊(cè)答案