如圖,以等邊三角形ABC的BC邊為直徑畫半圓,分別交AB、AC于點(diǎn)E、D,DF是圓的切線,過點(diǎn)F作BC的垂線交BC于點(diǎn)G.若AF的長為2,則FG的長為

A.4          B.6             C.            D.
C.

試題分析:連接OD,

∵DF為圓O的切線,
∴OD⊥DF,
∵△ABC為等邊三角形,
∴AB=BC=AC,∠A=∠B=∠C=60°,
∵OD=OC,
∴△OCD為等邊三角形,
∴∠CDO=∠A=60°,∠ABC=∠DOC=60°,
∴OD∥AB,
又O為BC的中點(diǎn),
∴D為AC的中點(diǎn),即OD為△ABC的中位線,
∴OD∥AB,
∴DF⊥AB,
在Rt△AFD中,∠ADF=30°,AF=2,
∴AD=4,即AC=8,
∴FB=AB-AF=8-2=6,
在Rt△BFG中,∠BFG=30°,
∴BG=3,
則根據(jù)勾股定理得:FG=3
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)學(xué)活動課上,王老師發(fā)給每位同學(xué)一張半徑為6個單位長度的圓形紙板,要求同學(xué)們:(1)從帶刻度的三角板、量角器和圓規(guī)三種作圖工具中任意選取作圖工具,把圓形紙板分成面積相等的四部分;(2)設(shè)計(jì)的整個圖案是某種對稱圖形.王老師給出了方案一,請你用所學(xué)的知識再設(shè)計(jì)兩種方案,并完成下面的設(shè)計(jì)報(bào)告.
名稱
四等分圓的面積
方案
方案一
方案二
方案三
選用的工具
帶刻度的三角板
量角器
帶刻度的三角板、圓規(guī)
 畫出示意圖

 
 
簡述設(shè)計(jì)方案
作⊙O兩條互相垂直的直徑AB、CD,將⊙O的面積分成相等的四份.
 
 
指出對稱性
既是軸對稱圖形又是中心對稱圖形
 
 
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A,B的坐標(biāo)分別是A(3,3)、B(1,2),△AOB繞點(diǎn)O逆時針旋轉(zhuǎn)90°后得到△.
(1)畫出△,直接寫出點(diǎn)的坐標(biāo);
(2)在旋轉(zhuǎn)過程中,點(diǎn)B經(jīng)過的路徑的長;
(3)求在旋轉(zhuǎn)過程中,線段AB所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以O(shè)為圓心的弧度數(shù)為60 o,∠BOE=45o,DA⊥OB,EB⊥OB.
(1)求的值;
(2)若OE與交于點(diǎn)M,OC平分∠BOE,連接CM.說明:CM為⊙O的切線;
(3)在(2)的條件下,若BC=1,求tan∠BCO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓錐底面半徑OA=10㎝,母線PA=30㎝.由底面周長上一點(diǎn)A出發(fā)繞其側(cè)面一周的最短路線長度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

75°的圓心角所對的弧長是2.5πcm,則此弧所在圓的半徑是      cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知⊙O1和⊙O2外切,半徑分別為1cm和3cm,那么半徑為5cm且與⊙O1、⊙O2都相切的圓一共可以作出        個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AD為⊙O的直徑,∠ABC=75°,且AC=BC,則∠BED=          °

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

機(jī)器人“海寶”在某圓形區(qū)域表演“按指令行走”,如圖所示,“海寶”從圓心O出發(fā),先沿北偏西67.4°方向行走13米至點(diǎn)A處,再沿正南方向行走14米至點(diǎn)B處,最后沿正東方向行走至點(diǎn)C處,點(diǎn)B、C都在圓O上.
(1)求弦BC的長;
(2)求圓O的半徑長.
(本題參考數(shù)據(jù):sin 67.4° =,cos 67.4°=,tan 67.4° =

查看答案和解析>>

同步練習(xí)冊答案