【題目】如今,旅游度假成為了中國人慶祝傳統(tǒng)春節(jié)的一項的“新年俗”,山西省旅發(fā)委發(fā)布的《2018年“春節(jié)”假日旅游市場總結分析報告》中稱:山西春節(jié)旅游供需兩旺,實現(xiàn)了“旅游接待”與“經(jīng)濟效益”的雙豐收,請根據(jù)圖表信息解決問題:

(1)如圖1所示,山西近五年春節(jié)假日接待海內外游客的數(shù)量逐年增加,2018年首次突破了“千萬”大關,達到   萬人次,比2017年春節(jié)假日增加   萬人次.

(2)2018年2月15日﹣20日期間,山西省35個重點景區(qū)每日接待游客數(shù)量如下:

日期

2月15日

(除夕)

2月16日

(初一)

2月17日

(初二)

2月18日(初三)

2月19日

(初四)

2月20日

(初五)

日接待游客數(shù)量(萬人次)

7.56

82.83

119.51

84.38

103.2

151.55

這組數(shù)據(jù)的中位數(shù)是   萬人次.

(3)根據(jù)圖2中的信息預估:2019年春節(jié)假日山西旅游總收入比2018年同期增長的百分率約為   ,理由是   

(4)春節(jié)期間,小明在“青龍古鎮(zhèn)第一屆新春廟會”上購買了A,B,C,D四枚書簽(除圖案外完全相同).正面分別印有“剪紙藝術”、“國粹京劇”、“陶瓷藝術”、“皮影戲”的圖案(如圖3),他將書簽背面朝上放在桌面上,從中隨機挑選兩枚送給好朋友,求送給好朋友的兩枚書簽中恰好有“剪紙藝術”的概率.

【答案】(1)1365.45、414.4(2)93.79(3)30%;近3年平均漲幅在30%左右,估計2019年比2018年同比增長約30%(4)

【解析】

(1)由圖1可得答案;

(2)根據(jù)中位數(shù)的定義求解可得;

(3)由近3年平均漲幅在30%左右即可做出估計;

(4)根據(jù)題意先畫出樹狀圖,得出共有12種等可能的結果數(shù),再利用概率公式求解可得.

(1)2018年首次突破了千萬大關,達到1365.45萬人次,比2017年春節(jié)假日增加1365.45﹣951.05=414.4萬人次.

故答案為:1365.45、414.4;

(2)這組數(shù)據(jù)的中位數(shù)是=93.79萬人次,

故答案為:93.79;

(3)2019年春節(jié)假日山西旅游總收入比2018年同期增長的百分率約為30%,理由是:近3年平均漲幅在30%左右,估計2019年比2018年同比增長約30%,

故答案為:30%;近3年平均漲幅在30%左右,估計2019年比2018年同比增長約30%.

(4)畫樹狀圖如下:

則共有12種等可能的結果數(shù),其中送給好朋友的兩枚書簽中恰好有剪紙藝術的結果數(shù)為6,

所以送給好朋友的兩枚書簽中恰好有剪紙藝術的概率為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某海域有、三艘船正在捕魚作業(yè),船突然出現(xiàn)故障,向兩船發(fā)出緊急求救信號,此時船位于船的北偏西方向,距海里的海域,船位于船的北偏東方向,同時又位于船的北偏東方向.

(1)的度數(shù);

船以每小時海里的速度前去救援,問多長時間能到出事地點.(結果精確到小時).(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條東西走向河的一側有一村莊C,河邊原有兩個取水點A,B,其中ABAC,由于某種原因,由CA的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個取水點HA、H、B在一條直線上),并新修一條路CH,測得CB3千米,CH2.4千米,HB1.8千米.

1)問CH是否為從村莊C到河邊的最近路?(即問:CHAB是否垂直?)請通過計算加以說明;

2)求原來的路線AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點,OC平分∠AOB交AB于點C,點D為線段AB上一點,過點D作DE//OC交y軸于點E,已知AO=m,BO=n,且m、n滿足n2-12+36+|n-2m|=0.

(1)求A、B兩點的坐標?

(2)若點D為AB中點,求OE的長?

(3)如圖2,若點P(x,-2x+6)為直線AB在x軸下方的一點,點E是y軸的正半軸上一動點,以E為直角頂點作等腰直角△PEF,使點F在第一象限,且F點的橫、縱坐標始終相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖①,在四邊形中,,點的中點,若的平分線,試判斷,,之間的等量關系.

解決此問題可以用如下方法:延長的延長線于點,易證得到,從而把,,轉化在一個三角形中即可判斷.

,之間的等量關系________

2)問題探究:如圖②,在四邊形中,,的延長線交于點,點的中點,若的平分線,試探究,,之間的等量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,已知點A-3,3),B-5,1),C-20),Pa,b)是△ABC的邊AC上任意一點,△ABC經(jīng)過平移后得到△A1B1C1,點P的對應點為P1a+6,b-2).

1)直接寫出點A1,B1C1的坐標.

2)在圖中畫出△A1B1C1

3)連接AA1,求△AOA1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)的圖像交于

1)求出m、n的值;

2)直接寫出不等式的解集;

3)求出ABP的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,等腰直角△ABOO點是坐標原點,A的坐標是(﹣4,0),直角頂點B在第二象限,等腰直角△BCDC點在y軸上移動,我們發(fā)現(xiàn)直角頂點D點隨之在一條直線上移動,這條直線的解析式是( 。

A. y=﹣2x+1 B. y=﹣x+2 C. y=﹣3x﹣2 D. y=﹣x+2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,直線l1:y=2x+3與直線l2:y=kx+b的交點Ay軸上,直線l3:y=x與直線l1相交于點B與直線l2相交于點C1,1.

1)求直線l2的解析式和B點的坐標;

2)求ABC的面積.

查看答案和解析>>

同步練習冊答案