【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)C的坐標(biāo)為(0,4),動(dòng)點(diǎn)A以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)O出發(fā)沿x軸的正方向運(yùn)動(dòng),M是線段AC的中點(diǎn).將線段AM以點(diǎn)A為中心,沿順時(shí)針?lè)较蛐D(zhuǎn)90°,得到線段AB.過(guò)點(diǎn)Bx軸的垂線,垂足為E,過(guò)點(diǎn)Cy軸的垂線,交直線BE于點(diǎn)D.設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)求證:△COA∽△AEB;

2)設(shè)△BCD的面積為S當(dāng)t為何值時(shí),S;

3)連接MB,當(dāng)MBOA時(shí),如果拋物線yax210ax的頂點(diǎn)在△ABM的內(nèi)部(不包括邊),求a的取值范圍.

【答案】1)見(jiàn)解析;(2t33+5時(shí);(3.

【解析】

(1)根據(jù)∠CAO=∠ABE,∠COA=∠AEB90°,即可證明;

(2)求△BCD的面積時(shí),可以CD為底、BD為高來(lái)解,那么表示出BD的長(zhǎng)是關(guān)鍵;RtCAORtABE,且知道AC、AB的比例關(guān)系,即可通過(guò)相似三角形的對(duì)應(yīng)邊成比例求出BE的長(zhǎng),進(jìn)一步得到BD的長(zhǎng),在表達(dá)BD長(zhǎng)時(shí),應(yīng)分兩種情況考慮:①B在線段DE上,②BED的延長(zhǎng)線上;

(3)首先將拋物線的解析式進(jìn)行配方,可得到拋物線的頂點(diǎn)坐標(biāo),將其橫坐標(biāo)分別代入直線MBAB的解析式中,可得到拋物線對(duì)稱(chēng)軸與這兩條直線的交點(diǎn)坐標(biāo),根據(jù)這兩個(gè)坐標(biāo)即可判定出a的取值范圍.

(1)∵∠CAO+∠BAE90°,∠ABE+∠BAE90°,

∴∠CAO=∠ABE,

∵∠COA=∠AEB90°,

∴△CAO∽△ABE

(2)由RtCAORtABE可知:BE,AE2

當(dāng)0t8時(shí),SCDBD(2+t)(4)=,

t1t23,

當(dāng)t8時(shí),SCDBD(2+t)(4)=,

t13+5,t235(為負(fù)數(shù),舍去),

當(dāng)t33+5時(shí),S;

(3)過(guò)MMNx軸于N,則MNCO2

當(dāng)MBOA時(shí),BEspan>MN2,OA2BE4,

拋物線yax210ax的頂點(diǎn)坐標(biāo)為(5,﹣25a),

它的頂點(diǎn)在直線x5上移動(dòng),

直線x5MB于點(diǎn)(52),交AB于點(diǎn)(51),

1<﹣25a2,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y-x+2分別交x軸、y軸于點(diǎn)A、B,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、B.點(diǎn)Px軸上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作垂直于x軸的直線分別交拋物線和直線AB于點(diǎn)E和點(diǎn)F.設(shè)點(diǎn)P的橫坐標(biāo)為m

1)點(diǎn)A的坐標(biāo)為   

2)求這條拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式.

3)點(diǎn)P在線段OA上時(shí),若以BE、F為頂點(diǎn)的三角形與△FPA相似,求m的值.

4)若E、F、P三個(gè)點(diǎn)中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),稱(chēng)EF、P三點(diǎn)為“共諧點(diǎn)”.直接寫(xiě)出E、FP三點(diǎn)成為“共諧點(diǎn)”時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,BC8,點(diǎn)FAB邊上一點(diǎn)(不與點(diǎn)B重合)△BCF的外接圓交對(duì)角線BD于點(diǎn)E,連結(jié)CFBD于點(diǎn)G

1)求證:∠ECG=∠BDC

2)當(dāng)AB6時(shí),在點(diǎn)F的整個(gè)運(yùn)動(dòng)過(guò)程中.

BF2時(shí),求CE的長(zhǎng).

當(dāng)△CEG為等腰三角形時(shí),求所有滿足條件的BE的長(zhǎng).

3)過(guò)點(diǎn)E作△BCF外接圓的切線交AD于點(diǎn)P.若PECFCF6PE,記△DEP的面積為S1,△CDE的面積為S2,請(qǐng)直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列幾組勾股數(shù):3,45; 512,13; 724,25; 9,40,41…按此規(guī)律,當(dāng)直角三角形的最小直角邊長(zhǎng)是11時(shí),則較長(zhǎng)直角邊長(zhǎng)是________;當(dāng)直角三角形的最小直角邊長(zhǎng)是時(shí),則較長(zhǎng)直角邊長(zhǎng)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近些年全國(guó)各地頻發(fā)霧霾天氣,給人民群眾的身體健康帶來(lái)了危害,某商場(chǎng)看到商機(jī)后決定購(gòu)進(jìn)甲、乙兩種空氣凈化器進(jìn)行銷(xiāo)售.若每臺(tái)甲種空氣凈化器的進(jìn)價(jià)比每臺(tái)乙種空氣凈化器的進(jìn)價(jià)少300元,且用6000元購(gòu)進(jìn)甲種空氣凈化器的數(shù)量與用7500元購(gòu)進(jìn)乙種空氣凈化器的數(shù)量相同.

1)求每臺(tái)甲種空氣凈化器、每臺(tái)乙種空氣凈化器的進(jìn)價(jià)分別為多少元?

2)若該商場(chǎng)準(zhǔn)備進(jìn)貨甲、乙兩種空氣凈化器共30臺(tái),且進(jìn)貨花費(fèi)不超過(guò)42000元,問(wèn)最少進(jìn)貨甲種空氣凈化器多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(m2),B(3,n)兩點(diǎn)關(guān)于原點(diǎn)O對(duì)稱(chēng),反比例函數(shù)y的圖象經(jīng)過(guò)點(diǎn)A

(1)求反比例函數(shù)的解析式并判斷點(diǎn)B是否在這個(gè)反比例函數(shù)的圖象上;

(2)點(diǎn)P(x1,y1)也在這個(gè)反比例函數(shù)的圖象上,﹣3x1mx10,請(qǐng)直接寫(xiě)出y1的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.若在P處有一棵樹(shù)與墻CD,AD的距離分別是15m和6m,要將這棵樹(shù)圍在花園內(nèi)(含邊界,不考慮樹(shù)的粗細(xì)),則花園面積S的最大值為_____m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以D為頂點(diǎn)的拋物線y=﹣x2+bx+cx軸于A、B兩點(diǎn),交y軸于點(diǎn)C,直線BC的表達(dá)式為y=﹣x+3.

(1)求拋物線的表達(dá)式;

(2)在直線BC上有一點(diǎn)P,使PO+PA的值最小,求點(diǎn)P的坐標(biāo);

(3)在x軸上是否存在一點(diǎn)Q,使得以A、C、Q為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸交于A,B兩點(diǎn),頂點(diǎn)P(m,n).給出下列結(jié)論:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在拋物線上,則y1>y2>y3;③關(guān)于x的方程ax2+bx+k=0有實(shí)數(shù)解,則k>c﹣n;④當(dāng)n=﹣時(shí),△ABP為等腰直角三角形.其中正確結(jié)論是______(填寫(xiě)序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案