【題目】甲、乙兩位運(yùn)動(dòng)員在相同條件下各射靶10次,毎次射靶的成績情況如圖.
(1)請(qǐng)?zhí)顚懴卤?/span>:
(2)請(qǐng)你從平均數(shù)和方差相結(jié)合對(duì)甲、乙兩名運(yùn)動(dòng)員6次射靶成績進(jìn)行分析:
平均數(shù) | 方差 | 中位數(shù) | 命中9環(huán)以上的次數(shù)(包括9環(huán)) | |
甲 | 7 | 1.2 | 1 | |
乙 | 5.4 | 7.5 |
(3)教練根據(jù)兩人的成績最后選擇乙去參加比賽,你能不能說出教練讓乙去比賽的理由?(至少說出兩條理由)
【答案】(1)見解析;(2)甲的成績比乙穩(wěn)定;(3)見解析
【解析】
(1)根據(jù)中位數(shù)、平均數(shù)的概念計(jì)算;
(2)從平均數(shù)和方差相結(jié)合看,方差越小的越成績?cè)胶茫?/span>
(3)根據(jù)題意,從平均數(shù),中位數(shù)兩方面分析即可.
解:(1) :(1)通過折線圖可知:
甲的環(huán)數(shù)按從小到大排列是5、6、6、7、7、7、7、8、8、9,
則數(shù)據(jù)的中位數(shù)是(7+7)÷2=7;
的平均數(shù)=(2+4+6+7+8+7+8+9+9+10)=7;
乙命中9環(huán)以上的次數(shù)(包括9環(huán))為3.
填表如下:
平均數(shù) | 方差 | 中位數(shù) | 命中9環(huán)以上的次數(shù)(包括9環(huán)) | |
甲 | 7 | 1.2 | 7 | 1 |
乙 | 7 | 5.4 | 7.5 | 3 |
(2)因?yàn)槠骄鶖?shù)相同,
所以甲的成績比乙穩(wěn)定.
(3)理由1:因?yàn)槠骄鶖?shù)相同,命中9環(huán)以上的次數(shù)甲比乙少,所以乙的成績比甲好些;
理由2:因?yàn)槠骄鶖?shù)相同,甲的中位數(shù)小于乙的中位數(shù),所以乙的成績比甲好些;
理由3:甲的成績?cè)谄骄鶖?shù)上下波動(dòng);而乙處于上升勢頭,從第4次以后就沒有比甲少的情況發(fā)生,乙較有潛力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖∠AOB=120°,把三角板60°的角的頂點(diǎn)放在O處.轉(zhuǎn)動(dòng)三角板(其中OC邊始終在∠AOB內(nèi)部),OE始終平分∠AOD.
(1)(特殊發(fā)現(xiàn))如圖1,若OC邊與OA邊重合時(shí),求出∠COE與∠BOD的度數(shù).
(2)(類比探究)如圖2,當(dāng)三角板繞O點(diǎn)旋轉(zhuǎn)的過程中(其中OC邊始終在∠AOB內(nèi)部),∠COE與∠BOD的度數(shù)比是否為定值?若為定值,請(qǐng)求出這個(gè)定值;若不為定值,請(qǐng)說明理由.
(3)(拓展延伸)如圖3,在轉(zhuǎn)動(dòng)三角板的過程中(其中OC邊始終在∠AOB內(nèi)部),若OP平分∠COB,請(qǐng)畫出圖形,直接寫出∠EOP的度數(shù)(無須證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機(jī)傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機(jī)傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請(qǐng)用“畫樹狀圖”的方式給出分析過程)
(2)如果甲跟另外n(n≥2)個(gè)人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是 (請(qǐng)直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格線的交點(diǎn)叫格點(diǎn),格點(diǎn)是的邊上的一點(diǎn)(請(qǐng)利用網(wǎng)格作圖,保留作圖痕跡).
(1)過點(diǎn)畫的垂線,交于點(diǎn);
(2)線段 的長度是點(diǎn)O到PC的距離;
(3)的理由是 ;
(4)過點(diǎn)C畫的平行線;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,∠EAD=∠C.
(1)試判斷AE與CD的位置關(guān)系,并說明理由;
(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)為推進(jìn)書香校園建設(shè),在全校范圍開展圖書漂流活動(dòng),現(xiàn)需要購進(jìn)一批甲、乙兩種規(guī)格的漂流書屋放置圖書.已知一個(gè)甲種規(guī)格的漂流書屋的價(jià)格比一個(gè)乙種規(guī)格的漂流書屋的價(jià)格高80元;如果購買2個(gè)甲種規(guī)格的漂流書屋和3個(gè)乙種規(guī)格的漂流書屋,一共需要花費(fèi)960元.
(1)求每個(gè)甲種規(guī)格的漂流書屋和每個(gè)乙種規(guī)格的漂流書屋的價(jià)格分別是多少元?
(2)如果學(xué)校計(jì)劃購進(jìn)這兩種規(guī)格的漂流書屋共15個(gè),并且購買這兩種規(guī)格的漂流書屋的總費(fèi)用不超過3040元,那么該學(xué)校至多能購買多少個(gè)甲種規(guī)格的漂流書屋?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為∠AOB的邊OA上一點(diǎn),OC=6,N為邊OB上異于點(diǎn)O的一動(dòng)點(diǎn),P是線段CN上一點(diǎn),過點(diǎn)P分別作PQ∥OA交OB于點(diǎn)Q,PM∥OB交OA于點(diǎn)M.
(1)若∠AOB=60,OM=4,OQ=1,求證:CN⊥OB.
(2)當(dāng)點(diǎn)N在邊OB上運(yùn)動(dòng)時(shí),四邊形OMPQ始終保持為菱形.
①問: 的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請(qǐng)說明理由.
②設(shè)菱形OMPQ的面積為S1,△NOC的面積為S2,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和正方形給出如下定義:若正方形的對(duì)角線交于點(diǎn)O,四條邊分別和坐標(biāo)軸平行,我們稱該正方形為原點(diǎn)正方形,當(dāng)原點(diǎn)正方形上存在點(diǎn)Q,滿足PQ≤1時(shí),稱點(diǎn)P為原點(diǎn)正方形的友好點(diǎn).
(1)當(dāng)原點(diǎn)正方形邊長為4時(shí),
①在點(diǎn)P1(0,0),P2(-1,1),P3(3,2)中,原點(diǎn)正方形的友好點(diǎn)是__________;
②點(diǎn)P在直線y=x的圖象上,若點(diǎn)P為原點(diǎn)正方形的友好點(diǎn),求點(diǎn)P橫坐標(biāo)的取值范圍;
(2)乙次函數(shù)y=-x+2的圖象分別與x軸,y軸交于點(diǎn)A,B,若線段AB上存在原點(diǎn)正方形的友好點(diǎn),直接寫出原點(diǎn)正方形邊長a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com