【題目】在矩形ABCO中,O為坐標(biāo)原點(diǎn),A在y軸上,C在x軸上,B的坐標(biāo)為(8,6),P是線段BC上動(dòng)點(diǎn),點(diǎn)D是直線y=2x﹣6上第一象限的點(diǎn),若△APD是等腰直角三角形,則點(diǎn)D的坐標(biāo)為_____________。
【答案】(4,2)或(, )或(, )
【解析】試題解析:①如圖1中,當(dāng)∠ADP=90°,D在AB下方,
設(shè)點(diǎn)D坐標(biāo)(a,2a-6),過(guò)點(diǎn)D作EF∥OC交OA于E,交BC于F,
則OE=2a-6,AE=AO-OE=12-2a,
在△ADE和△DPF中,
∴△ADE≌△DPF,
∴AE=DF=12-2a,
∵EF=OC=8,
∴a+12-2a=8,
∴a=4.
此時(shí)點(diǎn)D坐標(biāo)(4,2).
②如圖2中,當(dāng)∠ADP=90°,D在AB上方,
設(shè)點(diǎn)D坐標(biāo)(a,2a-6),過(guò)點(diǎn)D作EF∥OC交OA于E,交CB的延長(zhǎng)線于F,
則OE=2a-6,AE=OE-OA=2a-12,
由△ADE≌△DPF,得到DF=AE=2a-12,
∵EF=8,
∴a+2a-12=8,
∴a=,
此時(shí)點(diǎn)D坐標(biāo)(, ).
③如圖3中,當(dāng)∠APD=90°時(shí),
設(shè)點(diǎn)D坐標(biāo)(a,2a-6),作DE⊥CB的延長(zhǎng)線于E.同理可知△ABP≌△EPD,
∴AB=EP=8,PB=DE=a-8,
∴EB=2a-6-6=8-(a-8),
∴a=,
此時(shí)點(diǎn)D坐標(biāo)(, ).
當(dāng)∠DAP=90°時(shí),此時(shí)P在BC的延長(zhǎng)線上,
∴點(diǎn)D坐標(biāo)為(4,2)或(, )或(, ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的周長(zhǎng)為16,若 ,E是AB的中點(diǎn),則點(diǎn)E的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.同號(hào)兩數(shù)相乘,取原來(lái)的符號(hào)
B.一個(gè)數(shù)與﹣1相乘,積為該數(shù)的相反數(shù)
C.一個(gè)數(shù)與0相乘仍得這個(gè)數(shù)
D.兩個(gè)數(shù)相乘,積大于任何一個(gè)乘數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 斜邊相等的兩個(gè)直角三角形全等 B. 腰相等的兩個(gè)等腰三角形全等
C. 有一邊相等的等腰直角三角形全等 D. 有一邊相等的兩個(gè)等邊三角形全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,正方形 的頂點(diǎn) 在 軸上,且 , ,則正方形 的面積是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線y=x2先向右平移2個(gè)單位,再向下平移3個(gè)單位,那么所得到拋物線的函數(shù)關(guān)系式是( )
A.y=(x﹣2)2﹣3
B.y=(x+2)2﹣3
C.y=(x﹣2)2+3
D.y=(x+2)2+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形 是正方形, 是 垂直平分線上的點(diǎn),點(diǎn) 關(guān)于 的對(duì)稱點(diǎn)是 ,直線 與直線 交于點(diǎn) .
(1)若點(diǎn) 是 邊的中點(diǎn),連接 ,則 =;
(2)小明從老師那里了解到,只要點(diǎn) 不在正方形的中心,則直線 與 所夾銳角不變.他嘗試改變點(diǎn) 的位置,計(jì)算相應(yīng)角度,驗(yàn)證老師的說(shuō)法.
如圖,將點(diǎn) 選在正方形內(nèi),且△ 為等邊三角形,求出直線 與 所夾銳角的度數(shù);
(3)請(qǐng)你繼續(xù)研究這個(gè)問(wèn)題,可以延續(xù)小明的想法,也可用其它方法.
我選擇小明的想法;并簡(jiǎn)述求直線 與 所夾銳角度數(shù)的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)A(a,0)在x軸的正半軸上,定點(diǎn)B(m, n)在第一象限內(nèi)(m<2≤a).在△OAB外作正方形ABCD和正方形OBEF , 連接FD , 點(diǎn)M為線段FD的中點(diǎn).作BB1⊥x軸于點(diǎn)B1 , 作FF1⊥x軸于點(diǎn)F1.
(1)填空:由△≌△ , 及B(m, n)可得點(diǎn)F的坐標(biāo)為 , 同理可得點(diǎn)D的坐標(biāo)為;(說(shuō)明:點(diǎn)F , 點(diǎn)D的坐標(biāo)用含m , n , a的式子表示)
(2)直接利用(1)的結(jié)論解決下列問(wèn)題:
①當(dāng)點(diǎn)A在x軸的正半軸上指定范圍內(nèi)運(yùn)動(dòng)時(shí),點(diǎn)M總落在一個(gè)函數(shù)圖象上,求該函數(shù)的解析式(不必寫(xiě)出自變量x的取值范圍);
②當(dāng)點(diǎn)A在x軸的正半軸上運(yùn)動(dòng)且滿足2≤a≤8時(shí),求點(diǎn)M所經(jīng)過(guò)的路徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C是線段AB的中點(diǎn),CD平分∠ACE,CE平分∠BCD,CD=CE;
(1)求證:△ACD≌△BCE;
(2)若∠D=50°,求∠B的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com