【題目】當(dāng)x=﹣1時,代數(shù)式2ax2+3bx+8的值是12,則6b4a+2=(  )

A. 12B. 10C. 6D. 22

【答案】C

【解析】

x=﹣1代入2ax2+3bx+812得到2a3b4,整體代入6b4a+2=﹣22a3b+2計算可得.

解:將x=﹣1代入2ax2+3bx+812,得:2a3b4

6b4a+2=﹣22a3b+2

=﹣2×4+2

=﹣8+2

=﹣6.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題的個數(shù)是( 。

①同位角相等

②經(jīng)過一點有且只有一條直線與這條直線平行

③長度相等的弧是等弧

④順次連接菱形各邊中點得到的四邊形是矩形.

A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x-2y+3=0,則代數(shù)式1-2x+4y的值等于______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班同學(xué)上學(xué)期全部參加了捐款活動,捐款情況如下統(tǒng)計表:

金額(元)

5

10

15

20

25

30

人數(shù)(人)

8

12

10

6

2

2

(1)求該班學(xué)生捐款額的平均數(shù)和中位數(shù);
(2)試問捐款額多于15元的學(xué)生數(shù)是全班人數(shù)的百分之幾?
(3)已知這筆捐款是按3:5:4的比例分別捐給災(zāi)區(qū)民眾、重病學(xué)生、孤老病者三種被資助的對象,問該班捐給重病學(xué)生是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點,點A(﹣2,0),點B(0,2),點E,點F分別為OA,OB的中點.若正方形OEDF繞點O順時針旋轉(zhuǎn),得正方形OE′D′F′,記旋轉(zhuǎn)角為α.

1)如圖②,當(dāng)α=135°時,求AE′,BF′的長;

2)如圖③,當(dāng)0°﹤α﹤180°時, AE′BF′有什么位置關(guān)系;

3)若直線AE′與直線BF′相交于點P,求點P的縱坐標(biāo)的最大值(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某經(jīng)銷商銷售一批電話手表,第一個月以550元/塊的價格售出60塊,第二個月起降價,以500元/塊的價格將這批電話手表全部售出,銷售總額超過了5.5萬元.這批電話手表至少有( )
A.103塊
B.104塊
C.105塊
D.106塊

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知在數(shù)軸上有A、B兩點,點A表示的數(shù)是,點B表示的數(shù)是9.點

P在數(shù)軸上從點A出發(fā),以每秒2個單位的速度沿數(shù)軸正方向運動,同時,點Q在數(shù)軸上從

B出發(fā),以每秒3個單位的速度在沿數(shù)軸負方向運動,當(dāng)點Q到達點A時,兩點同時停止

運動.設(shè)運動時間為.

1AB= ; 時,點Q表示的數(shù)是 ;當(dāng) 時,P、Q兩點相遇;

2)如圖2,若點M為線段AP的中點,點N為線段BP中點,點P在運動過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段MN的長;

3)如圖3,若點M為線段AP的中點,點T為線段BQ中點,則點M表示的數(shù)為________;點T表示的數(shù)為________ ;MT=_________ .(用含t的代數(shù)式填空)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某市2016年企業(yè)用水量x(噸)與該月應(yīng)交的水費y(元)之間的函數(shù)關(guān)系如圖.

(1)當(dāng)x≥50時,求y關(guān)于x的函數(shù)關(guān)系式;

(2)若某企業(yè)201610月份的水費為620元,求該企業(yè)201610月份的用水量;

(3)為鼓勵企業(yè)節(jié)約用水,該市自20171月開始對月用水量超過80噸的企業(yè)加收污水處理費,規(guī)定:若企業(yè)月用水量x超過80噸,則除按2016年收費標(biāo)準(zhǔn)收取水費外,超過80噸的部分每噸另加收元的污水處理費,若某企業(yè)20173月份的水費和污水處理費共600元,求這個企業(yè)3月份的用水量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,經(jīng)過點A(-4,4)的拋物線y=ax2+bx+c與x軸相交于點B(-3,0)及原點O.

(1)求拋物線的解析式;

(2)如圖1,過點A作AH⊥x軸,垂足為H,平行于y軸的直線交線段AO于點Q,交拋物線于點P,當(dāng)四邊形AHPQ為平行四邊形時,求∠AOP的度數(shù);

(3)如圖2,若點C在拋物線上,且∠CAO=∠BAO,試探究:在(2)的條件下,是否存在點G,使得△GOP∽△COA?若存在,請求出所有滿足條件的點G坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案