精英家教網 > 初中數學 > 題目詳情

【題目】如圖:拋物線y=ax2+bx+c交y軸于點C(0,4),對稱軸x=2與x軸交于點D,頂點為M,且DM=OC+OD,
(1)求拋物線的解析式;
(2)設點P(x,y)是第一象限內該拋物線上的一個動點,△PCD的面積為S,求S關于x的函數關系式,寫出自變量x的取值范圍,并求當x取多少時,S的值最大,最大是多少?

【答案】
(1)解:∵OC=4,OD=2,

∴DM=6,

∴點M(2,6),

設y=a(x﹣2)2+6,代入(0,4)得:a=﹣

∴該拋物線解析式為y=﹣ (x﹣2)2+6;


(2)解:設點P(x,﹣ (x﹣2)2+6),即(x,﹣ x2+2x+4),x>0,

過點P作x軸的垂線,交x軸于點E,

則PE=﹣ x2+2x+4,DE=x﹣2,

S= x(﹣ x2+2x+4+4)﹣ ×2×4﹣ (x﹣2)(﹣ x2+2x+4),

即S=﹣ x2+4x=﹣ (x﹣4)2+8,

∴當x=4時,S有最大值為8.


【解析】(1)由OC與OD的長,求出MD的長,確定出M坐標,設y=a(x﹣2)2+6,把C坐標代入求出a的值,即可確定出拋物線解析式;(2)由拋物線解析式設出P坐標,過點P做x軸的垂線,交x軸于點E,利用表示出的點P的坐標確定出線段PE、DE的長,用梯形OCPE的面積減去直角三角形OCD的面積和直角三角形PDE的面積,進而得出S與x的函數解析式,利用二次函數性質求出S最大值時x的值即可.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某商店購進了A,B兩種家用電器,相關信息如下表:

家用電器

進價(元/件)

售價(元/件)

A

m+200

1800

B

m

1700

已知用6000元購進的A種電器件數與用5000元購進的B種電器件數相同.
(1)求表中m的值.
(2)由于A,B兩種家用電器熱銷,該商店計劃用不超過23000元的資金再購進A,B兩種電器總件數共20件,且獲利不少于13300元.請問:有幾種進貨方案?哪一種方案才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正比例函數y=2x的圖象與反比例函數y= 的圖象交于A、B兩點,過點A作AC垂直x軸于點C,連結BC.若△ABC的面積為2.
(1)求k的值;
(2)x軸上是否存在一點D,使△ABD為直角三角形?若存在,求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=9,SABC= ,動點P從A點出發(fā),沿射線AB方向以每秒5個單位的速度運動,動點Q從C點出發(fā),以相同的速度在線段AC上由C向A運動,當Q點運動到A點時,P、Q兩點同時停止運動,以PQ為邊作正方形PQEF(P、Q、E、F按逆時針排序),以CQ為邊在AC上方作正方形QCGH.

(1)求tanA的值;
(2)設點P運動時間為t,正方形PQEF的面積為S,請?zhí)骄縎是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由;
(3)當t為何值時,正方形PQEF的某個頂點(Q點除外)落在正方形QCGH的邊上,請直接寫出t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點A(1,5),B(4,2),點P在x軸上,當AP+BP最小時,點P的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:只有一組對角是直角的四邊形叫做損矩形,連接它的兩個非直角頂點的線段叫做這個損矩形的直徑,即損矩形外接圓的直徑.如圖,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,點D是菱形ACEF對角線的交點,連接BD.若∠DBC=60°,∠ACB=15°,BD=,則菱形ACEF的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某糧油超市平時每天都將一定數量的某些品種的糧食進行包裝以便出售,已知每天包裝大黃米的質量是包裝江米質量的倍,且每天包裝大黃米和江米的質量之和為45千克.
(1)求平均每天包裝大黃米和江米的質量各是多少千克?
(2)為迎接今年6月20日的“端午節(jié)”,該超市決定在前20天增加每天包裝大黃米和江米的質量,二者的包裝質量與天數的變化情況如圖所示,節(jié)日后又恢復到原來每天的包裝質量.分別求出在這20天內每天包裝大黃米和江米的質量隨天數變化的函數關系式,并寫出自變量的取值范圍.

(3)假設該超市每天都會將當天包裝后的大黃米和江米全部售出,已知大黃米成本價為每千克7.9元,江米成本每千克9.5元,二者包裝費用平均每千克均為0.5元,大黃米售價為每千克10元,江米售價為每千克12元,那么在這20天中有哪幾天銷售大黃米和江米的利潤之和大于120元?[總利潤=售價額﹣成本﹣包裝費用].

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD繞點B逆時針旋轉30°后得到正方形BEFG,EF與AD相交于點H,延長DA交GF于點K.若正方形ABCD邊長為 ,則AK= .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校以“我最喜愛的體育運動”為主題對全校學生進行隨機抽樣調查,調查的運動項目有:籃球、羽毛球、乒乓球、跳繩及其它項目(每位同學僅選一項).根據調查結果繪制了如下不完整的頻數分布表和扇形統(tǒng)計圖:

運動項目

頻數(人數)

頻率

籃球

30

0.25

羽毛球

m

0.20

乒乓球

36

n

跳繩

18

0.15

其它

12

0.10

請根據以上圖表信息解答下列問題:
(1)頻數分布表中的m= , n=;
(2)在扇形統(tǒng)計圖中,“乒乓球”所在的扇形的圓心角的度數為 °;
(3)從選擇“籃球”選項的30名學生中,隨機抽取3名學生作為代表進行投籃測試,則其中某位學生被選中的概率是

查看答案和解析>>

同步練習冊答案