(2009•衡陽)如圖,直線AB切⊙O于C點(diǎn),D是⊙O上一點(diǎn),∠EDC=30°,弦EF∥AB,連接OC交EF于H點(diǎn),連接CF,且CF=2,則HE的長(zhǎng)為   
【答案】分析:如圖,連接OE,CE,由EF∥AB得到∠F=∠BCF,由圓周角定理知∠F=∠D=30°,然后可以推出∠BCF=∠D=30°;而根據(jù)切線的性質(zhì)知道∠OCB=90°,進(jìn)一步得到∠OCF=60°,從而得到∠CEF=∠BCF=30°,由此推出∠CEF=∠F,點(diǎn)C是弧ECF的中點(diǎn),所以根據(jù)垂徑定理得到OC⊥EF,;然后即可證明△OEC是等邊三角形,最后利用EH=OEsin60°即可求出EH.
解答:解:如圖,
連接OE,CE,
∵EF∥AB,
∴∠F=∠BCF,
∴∠F=∠D=30°,
∴∠BCF=∠D=30°;
∵∠OCB=90°,
∴∠OCF=60°,
∴∠CEF=∠BCF=30°,
∴∠CEF=∠F,
則點(diǎn)C是弧ECF的中點(diǎn),
∴OC⊥EF,,∠EOC=60°;
∵OE=OC,
∴△OEC是等邊三角形,
∴OE=EC=CF=2,
∴EH=OE•sin60°=
點(diǎn)評(píng):本題利用了切線的概念,平行線的性質(zhì),直角三角形的性質(zhì),等邊三角形的判定和性質(zhì),正弦的概念等知識(shí)求解,綜合性比較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年江蘇省揚(yáng)州中學(xué)樹人學(xué)校中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•衡陽)如圖,AB是⊙O的直徑,弦BC=2cm,∠ABC=60度.

(1)求⊙O的直徑;
(2)若D是AB延長(zhǎng)線上一點(diǎn),連接CD,當(dāng)BD長(zhǎng)為多少時(shí),CD與⊙O相切;
(3)若動(dòng)點(diǎn)E以2cm/s的速度從A點(diǎn)出發(fā)沿著AB方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)F以1cm/s的速度從B點(diǎn)出發(fā)沿BC方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<2),連接EF,當(dāng)t為何值時(shí),△BEF為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河北省唐山市樂亭縣中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•衡陽)如圖,AB是⊙O的直徑,弦BC=2cm,∠ABC=60度.

(1)求⊙O的直徑;
(2)若D是AB延長(zhǎng)線上一點(diǎn),連接CD,當(dāng)BD長(zhǎng)為多少時(shí),CD與⊙O相切;
(3)若動(dòng)點(diǎn)E以2cm/s的速度從A點(diǎn)出發(fā)沿著AB方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)F以1cm/s的速度從B點(diǎn)出發(fā)沿BC方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<2),連接EF,當(dāng)t為何值時(shí),△BEF為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《投影與視圖》(02)(解析版) 題型:選擇題

(2009•衡陽)如圖所示,幾何體的左視圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖南省衡陽市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•衡陽)如圖所示,A、B、C分別表示三個(gè)村莊,AB=1000米,BC=600米,AC=800米,在社會(huì)主義新農(nóng)村建設(shè)中,為了豐富群眾生活,擬建一個(gè)文化活動(dòng)中心,要求這三個(gè)村莊到活動(dòng)中心的距離相等,則活動(dòng)中心P的位置應(yīng)在( )

A.AB中點(diǎn)
B.BC中點(diǎn)
C.AC中點(diǎn)
D.∠C的平分線與AB的交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖南省衡陽市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•衡陽)如圖所示,幾何體的左視圖是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案