【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1,y1),點(diǎn)Q的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2.若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,下圖①為點(diǎn)P,Q的“相關(guān)矩形”的示意圖.
已知點(diǎn)A的坐標(biāo)為(1,0),
(1)若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;
(2)點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(3)若點(diǎn)D的坐標(biāo)為(4,2),將直線y=2x+b平移,當(dāng)它與點(diǎn)A,D的“相關(guān)矩形”沒有公共點(diǎn)時(shí),求出b的取值范圍.
【答案】(1)2;(2)或;(3)或
【解析】
(1)由相關(guān)矩形的定義可知:要求A與B的相關(guān)矩形面積,則AB必為對(duì)角線,利用A、B兩點(diǎn)的坐標(biāo)即可求出該矩形的底與高的長(zhǎng)度,進(jìn)而可求出該矩形的面積;
(2)由定義可知,AC必為正方形的對(duì)角線,所以AC與x軸的夾角必為45,設(shè)直線AC的解析式為;y=kx+b,由此可知k=±1,再(1,0)代入y=kx+b,即可求出b的值;
(3)分別把點(diǎn)A、D點(diǎn)的坐標(biāo)代入y=2x+b±2,求得b的數(shù)值即可.
(1)∵A(1,0),B(3,1)
由定義可知:點(diǎn)A,B的“相關(guān)矩形”的底與高分別為2和1,
∴點(diǎn)A,B的“相關(guān)矩形”的面積為2×1=2;
(2)由定義可知:AC是點(diǎn)A,C的“相關(guān)矩形”的對(duì)角線,
又∵點(diǎn)A,C的“相關(guān)矩形”為正方形
∴直線AC與x軸的夾角為45°,
設(shè)直線AC的解析為:y=x+m或y=-x+n
把(1,0)分別y=x+m,
∴m=-1,
∴直線AC的解析為:y=x-1,
把(1,0)代入y=-x+n,
∴n=1,
∴y=-x+1,
綜上所述,若點(diǎn)A,C的“相關(guān)矩形”為正方形,直線AC的表達(dá)式為y=x-1或y=-x+1;
(3)把A(1,0),D(4,2)分別代入y=2x+b±2,
得出b=0,或b=-8,
∴b>0或b<-8
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)看一看下面兩組式子:(3×5)2 與 32×52,[(- )×4]2 與(- )2×42;每組的兩個(gè)算式的計(jì)算結(jié)果是否相等?
(2)想一想(ab)2等于什么?猜一猜,當(dāng) n 為正整數(shù)時(shí),(ab)n 等于什么?你能用一句 話敘述你的所得到的結(jié)果嗎?
(3)運(yùn)用上述結(jié)論計(jì)算下列各題
①(-8)2019×()2019
②(-1)2020×()2020
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,小明和父母一起開車到距家200千米的景點(diǎn)旅游.出發(fā)前,汽車油箱內(nèi)儲(chǔ)油45升,當(dāng)行駛150千米時(shí),發(fā)現(xiàn)油箱剩余油量為30升.(假設(shè)行駛過程中汽車的耗油量是均勻的.)
(1)寫出用行駛路程x(千米)來表示剩余油量Q(升)的代數(shù)式;
(2)當(dāng)x=300千米時(shí),求剩余油量Q的值;
(3)當(dāng)油箱中剩余油量少于3升時(shí),汽車將自動(dòng)報(bào)警.如果往返途中不加油,他們能否在汽車報(bào)警前回到家?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,把一個(gè)點(diǎn)先沿水平方向平移丨a丨格(當(dāng)a為正數(shù)時(shí),表示向右平移;當(dāng)a為負(fù)數(shù)時(shí),表示向左平移),再沿豎直方向平移丨b|格(當(dāng)b為正數(shù)時(shí),表示向上平移;當(dāng)b為負(fù)數(shù)時(shí),表示向下平移),得到一個(gè)新的點(diǎn),我們把這個(gè)過程記為(a,b)例如在圖1中.從A到B記為:A→B(+1,+3)從c到D記為:C→D(+3,一3),請(qǐng)回答下列問題:
(1)如圖1,若點(diǎn)A的運(yùn)動(dòng)路線為:A→B→D→A,請(qǐng)計(jì)算點(diǎn)A運(yùn)動(dòng)過的總路程;
(2)若點(diǎn)A運(yùn)動(dòng)的路線依次為:A→M(+2,+3)A→N(+1,―1),N→P
(-2,+2)P→Q(+4,—4)請(qǐng)你依次在圖2上標(biāo)出點(diǎn)M,N,P,Q的位置.
(3)在圖2中,若點(diǎn)A經(jīng)過(m,n)得到點(diǎn)E,點(diǎn)E再經(jīng)過(p、,q)后得到Q,則m與p滿足的數(shù)量關(guān)系是___________;n與q滿足的數(shù)量關(guān)系是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動(dòng),分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛哪種社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了多少人?
(2)求文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校有1500名學(xué)生,請(qǐng)估計(jì)喜歡體育類社團(tuán)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分9分)
劉衛(wèi)同學(xué)在一次課外活動(dòng)中,用硬紙片做了兩個(gè)直角三角形,見圖①、②.圖①中,,,;圖②中,,,.圖③是劉衛(wèi)同學(xué)所做的一個(gè)實(shí)驗(yàn):他將的直角邊與的斜邊重合在一起,并將沿方向移動(dòng).在移動(dòng)過程中,、兩點(diǎn)始終在邊上(移動(dòng)開始時(shí)點(diǎn)與點(diǎn)重合).
(1)在沿方向移動(dòng)的過程中,劉衛(wèi)同學(xué)發(fā)現(xiàn):、兩點(diǎn)間的距離逐漸 ▲ .
(填“不變”、“變大”或“變小”)
(2)劉衛(wèi)同學(xué)經(jīng)過進(jìn)一步地研究,編制了如下問題:
問題①:當(dāng)移動(dòng)至什么位置,即的長(zhǎng)為多少時(shí),、的連線與平行?
問題②:當(dāng)移動(dòng)至什么位置,即的長(zhǎng)為多少時(shí),以線段、、的長(zhǎng)度為三邊長(zhǎng)的三角形是直角三角形?
問題③:在的移動(dòng)過程中,是否存在某個(gè)位置,使得?如果存在,
求出的長(zhǎng)度;如果不存在,請(qǐng)說明理由.
請(qǐng)你分別完成上述三個(gè)問題的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1,拋物線與x軸交于A(﹣1,0),B(3,0),頂點(diǎn)為D(1,﹣4),點(diǎn)P為y軸上一動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)在y軸的負(fù)半軸上是否存在點(diǎn)P,使△BDP是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)如圖2,點(diǎn)在拋物線上,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為選拔優(yōu)秀選手參加瑤海區(qū)第八屆德育文化藝術(shù)節(jié)“誦經(jīng)典”比賽活動(dòng),九年級(jí)(1)、(2)班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)?nèi)鐖D所示
(1)根據(jù)圖示填寫下表
班級(jí) | 平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) |
九(1) | 85 |
| 85 |
九(2) |
| 80 |
|
(2)結(jié)合兩班復(fù)賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績(jī)較好;
(3)計(jì)算兩班復(fù)賽成績(jī)的方差,并說明哪個(gè)班五名選手的成績(jī)較穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某檢修小組乘一輛汽車沿公路檢修線路,約定向東走為正,向西走為負(fù)。某天從A地出發(fā)到收工時(shí),行走記錄(長(zhǎng)度單位:千米)為:+15,-2,+5,-1,+10,-3。
⑴問收工時(shí),檢修小組在A處的哪一邊,距A地多遠(yuǎn)?
⑵若汽車每千米的耗油為升,求從出發(fā)到收工共耗油多少升?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com