【題目】已知四邊形ABCD是矩形,O是對(duì)角線的交點(diǎn).圖中共有幾對(duì)三角形全等?并選擇一對(duì)加以證明.

(1)有________對(duì).

2)證明:

【答案】18;(2)見解析.

【解析】

1)根據(jù)矩形的性質(zhì)和全等三角形的性質(zhì)可得答案;

2)根據(jù)SSS可直接證明ABDCDB.

1)根據(jù)矩形的性質(zhì)和全等三角形的性質(zhì)可知,有AOBDOC,AODBOCABDDCA,ABDCDBABDBAC,DCACDBDCABAC,CDBBAC,共8對(duì),

故答案為:8

2ABDCDB,

證明:∵四邊形ABCD是矩形,

AB=CD,AD=BC

又∵BD=DB

ABDCDBSSS.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為全力推進(jìn)農(nóng)村公路快速發(fā)展,解決農(nóng)村出行難問(wèn)題,現(xiàn)將 A、BC 三村連通的公路進(jìn)行硬化改造(如圖所示),鋪設(shè)成水泥路面.已知 B 村在 A 村的北偏東 60°方向上,∠ABC110°

(1)C 村在 B 村的什么方向上?

(2)甲、乙兩個(gè)施工隊(duì)分別從 A 村、C 村向 B 村施工,兩隊(duì)的施工進(jìn)度相同A 村到 B 村的距離比 C B 村的距離多 400 米,甲隊(duì)用了 9 天完成鋪設(shè)任務(wù)乙隊(duì)用了 7 天完成鋪設(shè)任務(wù),求兩段公路的總長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1:在四邊形ABCD中,ABAD,∠BAD120°,∠B=∠ADC90°.E,F分別是BC,CD上的點(diǎn).且∠EAF60°.探究圖中線段BE,EF,FD之間的數(shù)量關(guān)系并證明. (提示:延長(zhǎng)CDG,使得DGBE)

(2)如圖2,若在四邊形ABCD中,ABAD,∠B+D180°.EF分別是BC,CD上的點(diǎn),且∠EAFBAD,上述結(jié)論是否仍然成立,并說(shuō)明理由;

(3)如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O)北偏西20°的A處,艦艇乙在指揮中心南偏東60°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn).1小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離.(可利用(2)的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知ADBC,B=D=120°

1)請(qǐng)問(wèn):ABCD平行嗎?為什么?

2)若點(diǎn)EF在線段CD上,且滿足AC平分∠BAEAF平分∠DAE,如圖②,求∠FAC的度數(shù).

3)若點(diǎn)E在直線CD上,且滿足∠EAC=BAC,求∠ACDAED的值(請(qǐng)自己畫出正確圖形,并解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種花卉,若購(gòu)進(jìn)甲種花卉20盆,乙種花卉50盆,需要720元;若購(gòu)進(jìn)甲種花卉40盆,乙種花卉30盆,需要880元.

1)求購(gòu)進(jìn)甲、乙兩種花卉,每盆各需多少元?

2)該花店銷售甲種花卉每盆可獲利6元,銷售乙種花卉每盆可獲利1元,現(xiàn)該花店準(zhǔn)備拿出800元全部用來(lái)購(gòu)進(jìn)這兩種花卉,設(shè)購(gòu)進(jìn)甲種花卉m盆,求當(dāng)m的值等于40時(shí),兩種花卉全部銷售后獲得的利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一長(zhǎng),寬的長(zhǎng)方形紙板,現(xiàn)要求以其一組對(duì)邊中點(diǎn)所在直線為軸,旋轉(zhuǎn),得到一個(gè)幾何體(結(jié)果保留);

1)寫出該幾何體的名稱__________;

2)所構(gòu)造的圓柱體的側(cè)面積__________

3)求所構(gòu)造的圓柱體的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:

某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價(jià)促銷的原則,使生產(chǎn)的玩具能夠及時(shí)售出,據(jù)市場(chǎng)調(diào)查:每個(gè)玩具按元銷售時(shí),每天可銷售個(gè);若銷售單價(jià)每降低元,每天可多售出個(gè).已知每個(gè)玩具的固定成本為元,問(wèn)這種玩具的銷售單價(jià)為多少元時(shí),廠家每天可獲利潤(rùn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)、是數(shù)軸上三點(diǎn),點(diǎn)表示的數(shù)為,

)寫出數(shù)軸上點(diǎn)、表示的數(shù):__________,__________

)動(dòng)點(diǎn) 同時(shí)從, 出發(fā),點(diǎn)以每秒個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)個(gè)單位長(zhǎng)度的速度沿?cái)?shù)向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.

①求數(shù)軸上點(diǎn), 表示的數(shù)(用含的式子表示);

為何值時(shí),點(diǎn) 相距個(gè)單位長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案