【題目】紅樹林學(xué)校在七年級新生中舉行了全員參加的防溺水安全知識競賽,試卷題目共10題,每題10分.現(xiàn)分別從三個班中各隨機取10名同學(xué)的成績(單位:分),收集數(shù)據(jù)如下:

1班:9070,80,80,80,80,8090,80,100;

2班:70,80,80,8060,9090,90100,90

3班:90,6070,80,80,80,80,90,100,100

整理數(shù)據(jù):

分數(shù)

人數(shù)

班級

60

70

80

90

100

1

0

1

6

2

1

2

1

1

3

1

3

1

1

4

2

2

分析數(shù)據(jù):

平均數(shù)

中位數(shù)

眾數(shù)

1

83

80

80

2

83

3

80

80

根據(jù)以上信息回答下列問題:

1)請直接寫出表格中的值;

2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認為哪個班的成績比較好?請說明理由;

3)為了讓學(xué)生重視安全知識的學(xué)習(xí),學(xué)校將給競賽成績滿分的同學(xué)頒發(fā)獎狀,該校七年級新生共570人,試估計需要準備多少張獎狀?

【答案】1,,;(22班成績比較好;理由見解析;(3)估計需要準備76張獎狀.

【解析】

1)根據(jù)眾數(shù)和中位數(shù)的概念求解可得;

2)分別從平均數(shù)、眾數(shù)和中位數(shù)三個方面比較大小即可得;

3)利用樣本估計總體思想求解可得.

1)由題意知

,

2班成績重新排列為6070,80,8080,90,90,90,90100,

2)從平均數(shù)上看三個班都一樣;

從中位數(shù)看,1班和3班一樣是80,2班最高是85;

從眾數(shù)上看,1班和3班都是80,2班是90

綜上所述,2班成績比較好;

3(張),

答:估計需要準備76張獎狀.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟社會的發(fā)展,人民對于美好生活的追求越來越高,外出旅游已成為時尚.某社區(qū)為了了解家庭旅游消費情況,隨機抽取部分家庭,對每戶家庭的年旅游消費金額進行問卷調(diào)査,根據(jù)調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖表.請你根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:

組別

家庭年旅游消費金額x()

戶數(shù)

A

x≤4000

27

B

4000< x≤8000

a

C

8000< x≤12000

24

D

12000< x≤16000

14

E

x>16000

6

1)本次被調(diào)査的家庭有 戶,表中 a= ;

2)本次調(diào)查數(shù)據(jù)的中位數(shù)出現(xiàn)在 組.扇形統(tǒng)計圖中,E組所在扇形的圓心角是 度;

3)若這個社區(qū)有2700戶家庭,請你估計家庭年旅游消費8000元以上的家庭有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,分別以AB、AD為邊向外作等邊ABE、ADF,延長CBAE于點G,點G在點A、E之間,連接CE、CF,EF,則以下四個結(jié)論一定正確的是:①△CDF≌△EBC;②∠CDF=EAF;③△ECF是等邊CGAE( 。

A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上,若四邊形EGFH是菱形,則AE的長是_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的一條邊AD=8,EBC邊上的一點,將矩形ABCD沿折痕AE折疊,使得頂點B落在CD邊上的點P處,PC=4(如圖1).

1)求AB的長;

2)擦去折痕AE,連結(jié)PB,設(shè)M是線段PA的一個動點(點M與點PA不重合).NAB沿長線上的一個動點,并且滿足PM=BN.過點MMH⊥PB,垂足為H,連結(jié)MNPB于點F(如圖2).

MPA的中點,求MH的長;

試問當(dāng)點M、N在移動過程中,線段FH的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段FH的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點E是邊CD上一點,且BCEC,CFBEAB于點FPEB延長線上一點,下列結(jié)論:①BE平分∠CBF;②CF平分∠DCB;③BCFB;④PFPC.其中正確結(jié)論的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王是新星廠的一名工人,請你閱讀下列信息:

信息一:工人工作時間:每天上午800—1200,下午1400—1800,每月工作25天;

信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時間的關(guān)系見下表:

生產(chǎn)甲種產(chǎn)品數(shù)()

生產(chǎn)乙種產(chǎn)品數(shù)()

所用時間(分鐘)

10

10

350

30

20

850

信息三:按件計酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元;

信息四:該廠工人每月收入由底薪和計酬工資兩部分構(gòu)成,小王每月的底薪為1900元.請根據(jù)以上信息,解答下列問題:

(1)小王每生產(chǎn)一件甲種產(chǎn)品和一件乙種產(chǎn)品分別需要多少分鐘;

(2)20181月工廠要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)某中學(xué)數(shù)學(xué)活動小組為了調(diào)查居民的用水情況,從某社區(qū)的戶家庭中隨機抽取了戶家庭的月用水量,結(jié)果如下表所示:

月用水量(噸)

戶數(shù)

1)求這戶家庭月用水量的平均數(shù)、眾數(shù)和中位數(shù);

2)根據(jù)上述數(shù)據(jù),試估計該社區(qū)的月用水量;

3)由于我國水資源缺乏,許多城市常利用分段計費的辦法引導(dǎo)人們節(jié)約用水,即規(guī)定每個家庭的月基本用水量為(噸),家庭月用水量不超過(噸)的部分按原價收費,超過(噸)的部分加倍收費.你認為上述問題中的平均數(shù)、眾數(shù)和中位數(shù)中哪一個量作為月基本用水量比較合理?簡述理由.

查看答案和解析>>

同步練習(xí)冊答案