【題目】如圖,拋物線(a≠0)交x軸于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以OC、OA為邊作矩形OADC交拋物線于點(diǎn)G.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸l在邊OA(不包括O、A兩點(diǎn))上平行移動(dòng),分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示PM的長(zhǎng);
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似?若存在,求出此時(shí)m的值;若不存在,請(qǐng)說明理由.
【答案】(1)y=-x2+x+4;(2)PM=-m2+4m(0<m<3);(3)存在這樣的點(diǎn)P使△PFC與△AEM相似.此時(shí)m的值為或1.
【解析】
試題分析:(1)將A(3,0),C(0,4)代入y=ax2-2ax+c,運(yùn)用待定系數(shù)法即可求出拋物線的解析式;
(2)先根據(jù)A、C的坐標(biāo),用待定系數(shù)法求出直線AC的解析式,進(jìn)而根據(jù)拋物線和直線AC的解析式分別表示出點(diǎn)P、點(diǎn)M的坐標(biāo),即可得到PM的長(zhǎng);
(3)由于∠PFC和∠AEM都是直角,F(xiàn)和E對(duì)應(yīng),則若以P、C、F為頂點(diǎn)的三角形和△AEM相似時(shí),分兩種情況進(jìn)行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長(zhǎng),根據(jù)相似三角形對(duì)應(yīng)邊的比相等列出比例式,求出m的值.
試題解析:(1)∵拋物線y=ax2-2ax+c(a≠0)經(jīng)過點(diǎn)A(3,0),點(diǎn)C(0,4),
∴,
解得.
∴拋物線的解析式為y=-x2+x+4;
(2)設(shè)直線AC的解析式為y=kx+b,
∵A(3,0),點(diǎn)C(0,4),
∴,
解得.
∴直線AC的解析式為y=-x+4.
∵點(diǎn)M的橫坐標(biāo)為m,點(diǎn)M在AC上,
∴M點(diǎn)的坐標(biāo)為(m,-m+4),
∵點(diǎn)P的橫坐標(biāo)為m,點(diǎn)P在拋物線y=-x2+x+4上,
∴點(diǎn)P的坐標(biāo)為(m,-m2+m+4),
∴PM=PE-ME=(-m2+m+4)-(-m+4)=-m2+4m,
即PM=-m2+4m(0<m<3);
(3)在(2)的條件下,連結(jié)PC,在CD上方的拋物線部分存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似.理由如下:由題意,可得AE=3-m,EM=-m+4,CF=m,若以P、C、F為頂點(diǎn)的三角形和△AEM相似,情況:
①P點(diǎn)在CD上方,則PF=-m2+m+4-4=-m2+m.
若△PFC∽△AEM,則PF:AE=FC:EM,
即(-m2+m):(3-m)=m:(-m+4),
∵m≠0且m≠3,
∴m=;
②若△CFP∽△AEM,則CF:AE=PF:EM,
即m:(3-m)=(-m2+m):(-m+4),
∵m≠0且m≠3,
∴m=1.
綜上所述,存在這樣的點(diǎn)P使△PFC與△AEM相似.此時(shí)m的值為或1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
如圖1,拋物線經(jīng)過A(1,0),B(7,0),D(0,) 三點(diǎn),以AB為邊在x軸上方作等邊三角形ABC.
(1)求拋物線的解析式;
(2)在拋物線x軸上方是否存在點(diǎn)M,使S△ABM =S△ABC,若存在,請(qǐng)求出點(diǎn)M坐標(biāo);若不存在,請(qǐng)說明理由;
(3)如圖2,E是線段AC上的動(dòng)點(diǎn),F(xiàn)是線段BC上的動(dòng)點(diǎn),AF與BE相交于點(diǎn)P.
①若CE=BF,試猜想AF與BE的數(shù)量關(guān)系,請(qǐng)說明理由,并求出∠APB的度數(shù);
②若AF=BE,當(dāng)點(diǎn)E由A運(yùn)動(dòng)到C時(shí),試求點(diǎn)P經(jīng)過的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在多項(xiàng)式2x2-xy3+18中,次數(shù)最高的項(xiàng)是【 】
A. 2 B. 18 C. 2x2 D. -xy3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多邊形的內(nèi)角和比外角和的三倍少180°,則這個(gè)多邊形是( )
A. 五邊形 B. 六邊形 C. 七邊形 D. 八邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC的外接圓圓心O在AB上,點(diǎn)D是BC延長(zhǎng)線上一點(diǎn),DM⊥AB于M,交AC于N,且AC=CD.CP是△CDN的ND邊的中線.
(1)求證:△ABC≌△DNC;
(2)試判斷CP與⊙O的位置關(guān)系,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)市委,市政府提出的“實(shí)現(xiàn)偉大中國(guó)夢(mèng),建設(shè)美麗新城市”的號(hào)召,我市某校在八,九年級(jí)開展征文活動(dòng),校學(xué)生會(huì)對(duì)這兩個(gè)年級(jí)各班內(nèi)的投稿情況進(jìn)行統(tǒng)計(jì),并制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
(1)求扇形統(tǒng)計(jì)圖中投稿篇數(shù)為2所對(duì)應(yīng)的扇形的圓心角的度數(shù):
(2)求該校八,九年級(jí)各班在這一周內(nèi)投稿的平均篇數(shù),并將該條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在投稿篇數(shù)為9篇的兩個(gè)班級(jí)中,八,九年級(jí)各有兩個(gè)班,校學(xué)生會(huì)準(zhǔn)備從這四個(gè)中選出兩個(gè)班參加全市的表彰會(huì),請(qǐng)你用列表法或畫樹狀圖的方法求出所選兩個(gè)班正好不在同一年級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B的坐標(biāo)分別為(1,1)和(5,4),拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)在線段AB上運(yùn)動(dòng),與x軸交于C、D兩點(diǎn)(C在D的左側(cè)),當(dāng)拋物線的頂點(diǎn)為A時(shí),點(diǎn)C的橫坐標(biāo)為O,則點(diǎn)D的橫坐標(biāo)最大值為( )
A.5 B.6 C.7 D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把x3﹣9x分解因式,結(jié)果正確的是( )
A.x(x2﹣9)
B.x(x﹣3)2
C.x(x+3)2
D.x(x+3)(x﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在東西方向的海岸線l上有一長(zhǎng)為1千米的碼頭MN,在碼頭西端M的正西方向30 千米處有一觀察站O.某時(shí)刻測(cè)得一艘勻速直線航行的輪船位于O的北偏西30°方向,且與O相距20千米的A處;經(jīng)過40分鐘,又測(cè)得該輪船位于O的正北方向,且與O相距20千米的B處.
(1)求該輪船航行的速度;
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請(qǐng)說明理由.(參考數(shù)據(jù):,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com