請(qǐng)?jiān)趯?shí)數(shù)3.2和3.8之間找一個(gè)無(wú)理數(shù),它可以是(    )
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)二次函數(shù)y=ax2+bx+c的圖象的一部分如圖,已知它的頂點(diǎn)M在第二象限,且經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)B(0,1).
(1)請(qǐng)判斷實(shí)數(shù)a的取值范圍,并說(shuō)明理由;
(2)設(shè)此二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為C,當(dāng)△AMC的面積為△ABC面積的
54
倍時(shí),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一次函數(shù)y1=x,二次函數(shù)y2=
1
2
x2+
1
2

(1)根據(jù)表中給出的x的值,填寫表中空白處的值;
精英家教網(wǎng)
(2)觀察上述表格中的數(shù)據(jù),對(duì)于x的同一個(gè)值,判斷y1和y2的大小關(guān)系.并證明:在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1和y2的大小關(guān)系仍然成立;
(3)若把y=x換成與它平行的直線y=x+k(k為任意非零實(shí)數(shù)),請(qǐng)進(jìn)一步探索:當(dāng)k滿足什么條件時(shí),(2)中的結(jié)論仍然成立?當(dāng)k滿足什么條件時(shí),(2)中的結(jié)論不能對(duì)任意的實(shí)數(shù)x都成立?并確定使(2)中的結(jié)論不成立的x的范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀題:
分解因式:x2+2x-3
解:原式=x2+2x+1-1-3
=(x2+2x+1)-4
=(x+1)2-4
=(x+1+2)(x+1-2)
=(x+3)(x-1)
此方法是抓住二次項(xiàng)和一次項(xiàng)的特點(diǎn),然后加一項(xiàng),使這三項(xiàng)為完全平方式,我們稱這種方法為配方法.此題為用配方法分解因式.
請(qǐng)?bào)w會(huì)配方法的特點(diǎn),然后用配方法解決下列問(wèn)題:
在實(shí)數(shù)范圍內(nèi)分解因式:4a2+4a-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料并解決有關(guān)問(wèn)題:我們知道:|x|=
-x(當(dāng)x<0時(shí))
0(當(dāng)x=0時(shí))
x(當(dāng)x>0時(shí))
,現(xiàn)在我們可以用這一結(jié)論來(lái)解含有絕對(duì)值的方程.例如,解方程|x+1|+|2x-3|=8時(shí),可令x+1=0和2x-3=0,分別求得x=-1和
3
2
,(稱-1和
3
2
分別為|x+1|和|2x-3|的零點(diǎn)值),在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=-1和可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:①x<-1②-1≤x<
3
2
x≥
3
2
,從而解方程|x+1|+|2x-3|=8可分以下三種情況:
①當(dāng)x<-1時(shí),原方程可化為-(x+1)-(2x-3)=8,解得x=-2.
②當(dāng)-1≤x<
3
2
時(shí),原方程可化為(x+1)-(2x-3)=8,解得x=-4,但不符合-1≤x<
3
2
,故舍去.
③當(dāng)x≥
3
2
時(shí),原方程可化為(x+1)+(2x-3)=8,解得x=
10
3

綜上所述,方程|x+1|+|2x-3|=8的解為,x=-2和x=
10
3

通過(guò)以上閱讀,請(qǐng)你解決以下問(wèn)題:
(1)分別求出|x+2|和|3x-1|的零點(diǎn)值.
(2)解方程|x+2|+|3x-1|=9.

查看答案和解析>>

同步練習(xí)冊(cè)答案