【題目】已知,在△ABC中,BC=3,∠A=22.5°,將△ABC翻折使得點B與點A重合,折痕與邊AC交于點P,如果AP=4,那么AC的長為_______
【答案】
【解析】
過B作BF⊥CA于F,構(gòu)造直角三角形,分兩種情況討論,利用勾股定理以及等腰直角三角形的性質(zhì),即可得到AC的長.
分兩種情況:
①當(dāng)∠C為銳角時,如圖所示,過B作BF⊥AC于F,
由折疊可得,折痕PE垂直平分AB,
∴AP=BP=4,
∴∠BPC=2∠A=45°,
∴△BFP是等腰直角三角形,
∴BF=DF=,
又∵BC=3,
∴Rt△BFC中,CF=,
∴AC=AP+PF+CF=5+;
②當(dāng)∠ACB為鈍角時,如圖所示,過B作BF⊥AC于F,
同理可得,△BFP是等腰直角三角形,
∴BF=FP=,
又∵BC=3,
∴Rt△BCF中,CF=,
∴AC=AF-CF=3+.
故答案為:5+或3+.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,斜邊,是的中點,以為圓心,線段的長為半徑畫圓心角為的扇形,弧經(jīng)過點,則圖中陰影部分的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別是邊AD,BC的中點,連接DF,過點E作EH⊥DF,垂足為H,EH的延長線交DC于點G.
(1)猜想DG與CF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)過點H作MN∥CD,分別交AD,BC于點M,N,若正方形ABCD的邊長為10,點P是MN上一點,求△PDC周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在第1個中,;在邊上任取一點,延長到,使,得到第2個;在邊上任取一點,延長到,使,得到第3個…按此做法繼續(xù)下去,則第個三角形中以為頂點的底角度數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,王老師出示了如下框中的題目.
小明與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況探索結(jié)論:在等邊三角形ABC中,當(dāng)點E為AB的中點時,點D在CB點延長線上,且ED=EC;如圖1,確定線段AE與DB的大小關(guān)系.請你直接寫出結(jié)論 ;
(2)特例啟發(fā),解答題目
王老師給出的題目中,AE與DB的大小關(guān)系是: .理由如下:
如圖2,過點E作EF∥BC,交AC于點F,(請你完成以下解答過程)
(3)拓展結(jié)論,設(shè)計新題
在△ABC中,AB=BC=AC=1;點E在AB的延長線上,AE=2;點D在CB的延長線上,ED=EC,如圖3,請直接寫CD的長 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論:①a+b+c>0;②a﹣b+c>0;③abc<0;④2a+b=0.其中正確的個數(shù)為( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC于D,下列條件:①∠B+∠DAC=90°;②∠B=∠DAC;③=;④AB2=BDBC . 其中一定能夠判定△ABC是直角三角形的有( )個.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新能源汽車環(huán)保節(jié)能,越來越受到消費者的喜愛.各種品牌相繼投放市場.一汽貿(mào)公司經(jīng)銷某品牌新能源汽車.去年銷售總額為5000萬元,今年1~5月份,每輛車的銷售價格比去年降低1萬元.銷售數(shù)量與去年一整年的相同.銷售總額比去年一整年的少20%,今年1~5月份每輛車的銷售價格是多少萬元?設(shè)今年1~5月份每輛車的銷售價格為x萬元.根據(jù)題意,列方程正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖,給出下列四個結(jié)論:①;②;③;④,其中正確結(jié)論的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com