【題目】如圖,在中,,,斜邊,是的中點,以為圓心,線段的長為半徑畫圓心角為的扇形,弧經(jīng)過點,則圖中陰影部分的面積為________.
【答案】
【解析】
連接OC,作OM⊥BC,ON⊥AC,證明△OMG≌△ONH,則S四邊形OGCH=S四邊形OMCN,求得扇形FOE的面積,則陰影部分的面積即可求得.
連接OC,作OM⊥BC,ON⊥AC.
∵CA=CB,∠ACB=90°,點O為AB的中點,
∴OC=AB=1,四邊形OMCN是正方形,OM=.
則扇形FOE的面積是:.
∵OA=OB,∠AOB=90°,點D為AB的中點,
∴OC平分∠BCA,
又∵OM⊥BC,ON⊥AC,
∴OM=ON,
∵∠GOH=∠MON=90°,
∴∠GOM=∠HON,
則在△OMG和△ONH中,
,
∴△OMG≌△ONH(AAS),
∴S四邊形OGCH=S四邊形OMCN=()2=.
則陰影部分的面積是:﹣.
故答案為:﹣.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 4 4 的正方形網(wǎng)格中,有 5 個黑色小正方形.
(1)請你移動一個黑色小正方形,使移動后所形成的4 4 的正方形網(wǎng)格圖形是軸對稱圖形.如:將 8 號小正方形移至 14 號;你的另一種做法是將 號小正方形移至 號(填寫標號即可);
(2)請你移動 2 個小正方形,使移動后所形成的圖形是軸對稱圖形.你的一種做法是將 號小正方形移至 號、將 號小正方形移至 號(填寫標號即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸相交于、兩點,與軸相交于點,點、是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點、.
求點的坐標;
求一次函數(shù)的表達式;
根據(jù)圖象寫出使一次函數(shù)值大于二次函數(shù)值的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l1的解析式為,直線l2的解析式為,與x軸、y軸分別交于點A、點B,直線l1與l2交于點C.
(1)求點A、點B、點C的坐標,并求出△COB的面積;
(2)若直線l2上存在點P(不與B重合),滿足S△COP=S△COB,請求出點P的坐標;
(3)在y軸右側有一動直線平行于y軸,分別與l1,l2交于點M、N,且點M在點N的下方,y軸上是否存在點Q,使△MNQ為等腰直角三角形?若存在,請直接寫出滿足條件的點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)畫出△ABC和△A1B1C1關于原點O對稱,畫出△A1B1C1,并寫出△A1B1C1的各頂點的坐標;
(2)將△ABC繞著點O按順時針方向旋轉90°得到的△A2B2C2,畫出△A2B2C2,并寫出△A2B2C2的各頂點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,OA=OB,點B的坐標為(1,0),AB=,線段OB上的動點(點C不與O、B重合),連接AC,作AC⊥CD,作DE⊥x軸,垂足為點E.
(1)求證:△ACO≌△CDE;
(2)猜想△BDE的形狀,并證明結論:
(3)如圖2,當△BCD為等腰三角形時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MON=90°,已知△ABC中,AC=BC=AB=6,△ABC的頂點A、B分別在邊OM、ON上,當點B在邊ON上運動時,A隨之在OM上運動,△ABC的形狀始終保持不變,在運動的過程中,點C到點O的距離為整數(shù)的點有( 。﹤.
A.5B.6C.7D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在△ABC中,BC=3,∠A=22.5°,將△ABC翻折使得點B與點A重合,折痕與邊AC交于點P,如果AP=4,那么AC的長為_______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com