【題目】甲、乙、丙3名學生各自隨機選擇到A、B兩個書店購書.
(1)則甲、乙2名學生在不同書店購書的概率是________;
(2)求甲、乙、丙3名學生在同一書店購書的概率.
(請用畫“樹狀圖”或“列表”等方法寫出解題過程)
【答案】(1);(2).
【解析】
(1)根據題意,運用樹狀圖發(fā)列出所有可能的結果,找到符合甲,乙兩名學生到不同的書店購書的情況,利用概率公式求解其概率即可.(2)根據題意,利用(1)中樹狀圖法找到符合甲、乙、丙三名學生到同一書店購書的情況,利用概率公式求解其概率即可.
(1)樹狀圖如下:
由樹狀圖知共有4種等可能結果,其中甲乙在不同書店購書有2種,
∴P(甲乙在不同書店購書)=.
故答案為:.
(2)甲乙丙三名學生到A、B兩個書店購書的所有可能的結果如圖所示:
從樹狀圖可以看出,這三名學生到同一書店購書的可能結果有AAA、BBB共2種,
所以P(甲、乙、丙到同一書店購書的概率) = =
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( 。
A.了解全國中學生最喜愛哪位歌手,適合全面調查.
B.甲乙兩種麥種,連續(xù)3年的平均畝產量相同,它們的方差為:S甲2=5,S乙2=0.5,則甲麥種產量比較穩(wěn).
C.某次朗讀比賽中預設半數晉級,某同學想知道自己是否晉級,除知道自己的成績外,還需要知道平均成績.
D.一組數據:3,2,5,5,4,6的眾數是5.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BE是弦,點D是弦BE上一點,連接OD并延長交⊙O于點C,連接BC,過點D作FD⊥OC交⊙O的切線EF于點F.
(1)求證:∠CBE=∠F;
(2)若⊙O的半徑是2,點D是OC中點,∠CBE=15°,求線段EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,BD是⊙O的直徑,過點A作AE⊥CD,交CD的延長線于點E,DA平分∠BDE.
1)求證:AE是⊙O的切線;
(2)已知AE=8cm,CD=12cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,己知Rt△ABC中,∠C=90°,AC=8,BC=6,點P以每秒1個單位的速度從A向C運動,同時點Q以每秒2個單位的速度從A→B→C方向運動,它們到C點后都停止運動,設點P,Q運動的時間為t秒.
(1)當t=2.5時,PQ= ;
(2)經過t秒的運動,求△ABC被直線PQ掃過的面積S與時間t的函數關系式;
(3)P,Q兩點在運動過程中,是否存在時間t,使得△PQC為等腰三角形?若存在,求出此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市預測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進貨單價多少元?
(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設P點的運動時間為t秒,△PAD的面積為S,S關于t的函數圖象如圖(2)所示,當P運動到BC中點時,△PAD的面積為( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】快、慢兩車分別從相距千米路程的甲、乙兩地同時出發(fā),勻速行駛.先相向而行,快車到達乙地后,停留小時,然后按原路原速返回,快車比慢車晚小時到達甲地,快、慢兩車之間相距的距離(千米)與出發(fā)后所用的時間(小時)的關系如圖所示,請問:在快車返回途中,快、慢兩車相距路程為千米時,慢車行駛了__________小時.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com