【題目】已知一次函數(shù)y=﹣x+2的圖象,繞x軸上一點Pm0)旋轉(zhuǎn)180°,所得的圖象經(jīng)過(0.﹣1),則m的值為( 。

A.2B.1C.1D.2

【答案】C

【解析】

根據(jù)題意得出旋轉(zhuǎn)后的函數(shù)解析式為y=-x-1,然后根據(jù)解析式求得與x軸的交點坐標(biāo),結(jié)合點的坐標(biāo)即可得出結(jié)論.

一次函數(shù)y=﹣x+2的圖象,繞x軸上一點Pm,0)旋轉(zhuǎn)180°,所得的圖象經(jīng)過(0.﹣1),

設(shè)旋轉(zhuǎn)后的函數(shù)解析式為y=﹣x1,

在一次函數(shù)y=﹣x+2中,令y0,則有﹣x+20,解得:x4

即一次函數(shù)y=﹣x+2x軸交點為(4,0).

一次函數(shù)y=﹣x1中,令y0,則有﹣x10,解得:x=﹣2,

即一次函數(shù)y=﹣x1x軸交點為(﹣2,0).

m1,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,每個小正方形的邊長都為1,的頂點都在格點上,回答下列問題:

可以看作是經(jīng)過若干次圖形的變化平移、軸對稱、旋轉(zhuǎn)得到的,寫出一種由得到的過程:______;

畫出繞點B逆時針旋轉(zhuǎn)的圖形;

中,點C所形成的路徑的長度為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C,點D為頂點.

1)求點B及點D的坐標(biāo).

2)連結(jié)BD,CD,拋物線的對稱軸與x軸交于點E

若線段BD上一點P,使∠DCP=∠BDE,求點P的坐標(biāo).

若拋物線上一點M,作MN⊥CD,交直線CD于點N,使∠CMN=∠BDE,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,AC=3,BC=4,點PAB邊上任一點,過P分別作PEACE,PFBCF,則線段EF的最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三角形紙片ABC中,AB=6BC=8,AC=4.沿虛線剪下的涂色部分的三角形與ABC相似的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華和同伴在春游期間,發(fā)現(xiàn)在某地小山坡的點E處有一棵盛開的桃花的小桃樹,他想利用平面鏡測量的方式計算一下小桃樹到山腳下的距離,即DE的長度,小華站在點B的位置,讓同伴移動平面鏡至點C處,此時小華在平面鏡內(nèi)可以看到點E,且BC2.7米,CD11.5米,∠CDE120°,已知小華的身高為1.8米,請你利用以上的數(shù)據(jù)求出DE的長度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 y=a+bx+c 的對稱軸為直線 x=2,與 x 軸的一個交點坐標(biāo)為(4,0)其部分圖象如圖所示,下列結(jié)論其中結(jié)論正確的是(

①拋物線過原點;②4a+b=0;③ab+c0;④拋物線線的頂點坐標(biāo)為(2b);⑤當(dāng) x2 時,y x 增大而增大

A.①②③B.③④⑤C.①②④D.①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解初中學(xué)生每天在校體育活動的時間(單位:),隨機(jī)調(diào)查了該校的部分初中學(xué)生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計圖1和圖2.請根據(jù)相關(guān)信息,解答下列問題:

)本次接受調(diào)查的初中學(xué)生人數(shù)為 ,圖1的值為 ;

)求統(tǒng)計的這組每天在校體育活動時間數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

)根據(jù)統(tǒng)計的這組每天在校體育活動時間的樣本數(shù)據(jù),若該校共有1200名初中學(xué)生,估計該校每天在校體育活動時間大于的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,AD與圓相切,請在下圖中,僅用無刻度的直尺按要求畫圖.

1)若BC是圓的直徑,畫出平行四邊形ABCD的邊CD上的高;

2)若CD與圓相切,畫出平行四邊形ABCD的邊BC上的高AE.

查看答案和解析>>

同步練習(xí)冊答案