【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點O在AB上,BC=CD,過點C作⊙O的切線,分別交AB,AD的延長線于點E,F.
(1)求證:AF⊥EF;
(2)若cos∠DAB=,BE=1,則線段AD的長是_____.
【答案】(1)詳見解析;(2).
【解析】
(1)如圖(見解析),連接OC,先根據(jù)圓周角定理得出∠1=∠2,再根據(jù)等腰三角形的性質(zhì)得出∠2=∠OCA,從而可得∠1=∠OCA,然后根據(jù)平行線的判定可得OC∥AF,最后根據(jù)圓的切線的性質(zhì)得OC⊥EF,從而得到AF⊥EF;
(2)先利用OC∥AF得到∠COE=∠DAB,在中,設(shè)OC=r,利用余弦的定義得到=,解得r=3,如圖(見解析),連接BD,根據(jù)圓周角定理得到,然后根據(jù)余弦的定義即可計算出AD的長.
(1)如圖,連接OC
∵CD=BC
∴=
∴∠1=∠2
∵OA=OC
∴∠2=∠OCA
∴∠1=∠OCA
∴OC∥AF
∵EF為切線
∴OC⊥EF
∴AF⊥EF;
(2)∵OC∥AF
∴∠COE=∠DAB
設(shè)OC=r
在中,,即=
解得r=3
如圖,連接BD
∵AB為直徑
∴
在中,,即
解得
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC且DE=OC,連接CE、OE,連接AE交OD于點F.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為4,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中(每個小正方形的邊長都為1個單位),在平面直角坐標(biāo)系內(nèi),△OBC的頂點B、C分別為B(0,﹣4),C(2,﹣4).
(1)請在圖中標(biāo)出△OBC的外接圓的圓心P的位置,并填寫:圓心P的坐標(biāo)為 ;
(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△OB1C1;
(3)在(2)的條件下,求出旋轉(zhuǎn)過程中點C所經(jīng)過分路徑長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)計劃對1200m2的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo)由甲、乙兩個施工隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且甲、乙兩隊在分別獨立完成面積為300m2區(qū)域的綠化時,甲隊比乙隊少用3天.
⑴ 甲、乙兩施工隊每天分別能完成綠化的面積是多少?
⑵ 設(shè)先由甲隊施工x天,再由乙隊施工y天,剛好完成綠化任務(wù),求y關(guān)于x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在網(wǎng)格紙中,每個小正方形的邊長都是1個單位長度,每個小正方形的頂點叫做格點,點A,B,C,D均落在格點上,點E是AB的中點,過點E作EF∥AD,交BC于點F,作AG⊥EF,交FE延長線于點G,則線段EG的長度是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的方格中,△OAB的頂點坐標(biāo)分別為O(0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1與△OAB是關(guān)于點P為位似中心的位似圖形.
(1)在圖中標(biāo)出位似中心P的位置,并寫出點P的坐標(biāo)及△O1A1B1與△OAB的位似比;
(2)以原點O為位似中心,在y軸的左側(cè)畫出△OAB的另一個位似△OA2B2,使它與△OAB的位似比為2:1,并寫出點B的對應(yīng)點B2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織外出研學(xué)活動,若每位老師帶隊14名學(xué)生,則還剩10名學(xué)生沒老師帶;若每位老師帶隊15名學(xué)生,就有一位老師少帶6名學(xué)生,現(xiàn)有甲、乙兩種大型客車,它們的載客量和租金如表所示:
甲型客車 | 乙型客車 | |
載客量(人/輛) | 35 | 30 |
租金(元/輛) | 400 | 320 |
學(xué)校計劃本次研學(xué)活動的租金總費用不超過3000元,為了保證安全,每輛客車上至少要有2名老師.
(1)參加此次研學(xué)活動的老師和學(xué)生各有多少人?
(2)既要保證所有師生都有車坐,又要保證每輛車上至少要有2名老師,可知租車總輛數(shù)為____輛;
(3)學(xué)校共有幾種租車方案?最少租車費用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解九年級學(xué)生對三大球類運動的喜愛情況,從九年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查問卷,通過分析整理繪制了如下兩幅統(tǒng)計圖.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)求參與調(diào)查的學(xué)生中,喜愛排球運動的學(xué)生人數(shù),并補全條形圖;
(2)若該中學(xué)九年級共有800名學(xué)生,請你估計該中學(xué)九年級學(xué)生中喜愛籃求運動的學(xué)生有多少名?
(3)若從喜愛足球運動的2名男生和2名女生中隨機(jī)抽取2名學(xué)生,確定為該校足球運動員的重點培養(yǎng)對象,請用列表法或畫樹狀圖的方法求抽取的兩名學(xué)生為一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(初步探究)
(1)如圖1,在四邊形ABCD中,∠B=∠C=90°,點E是邊BC上一點,AB=EC,BE=CD,連接AE、DE.判斷△AED的形狀,并說明理由.
(解決問題)
(2)如圖2,在長方形ABCD中,點P是邊CD上一點,在邊BC、AD上分別作出點E、F,使得點F、E、P是一個等腰直角三角形的三個頂點,且PE=PF,∠FPE=90°.要求:僅用圓規(guī)作圖,保留作圖痕跡,不寫作法.
(拓展應(yīng)用)
(3)如圖3,在平面直角坐標(biāo)系xOy中,已知點A(2,0),點B(4,1),點C在第一象限內(nèi),若△ABC是等腰直角三角形,則點C的坐標(biāo)是 .
(4)如圖4,在平面直角坐標(biāo)系xOy中,已知點A(1,0),點C是y軸上的動點,線段CA繞著點C按逆時針方向旋轉(zhuǎn)90°至線段CB,CA=CB,連接BO、BA,則BO+BA的最小值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com