精英家教網 > 初中數學 > 題目詳情

【題目】圓桌面(桌面中間有一個直徑為0.4m的圓洞)正上方的燈泡(看作一個點)發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為1.2m,桌面離地面1m,若燈泡離地面3m,則地面圓環(huán)形陰影的面積是( 。

A.0.324πm2
B.0.288πm2
C.1.08πm2
D.0.72πm2

【答案】D
【解析】解:如圖所示:∵AC⊥OB,BD⊥OB,
∴△AOC∽△BOC,
= ,即 = ,
解得:BD=0.9m,
同理可得:AC′=0.2m,則BD′=0.3m,
∴S圓環(huán)形陰影=0.92π﹣0.32π=0.72π(m2).
故選:D.

先根據AC⊥OB,BD⊥OB可得出△AOC∽△BOD,由相似三角形的對應邊成比例可求出BD的長,進而得出BD′=0.3m,再由圓環(huán)的面積公式即可得出結論.本題考查的是相似三角形的應用以及中心投影,利用相似三角形的對應邊成比例得出陰影部分的半徑是解題關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,動點M從點B出發(fā),在BA邊上以每秒2cm的速度向點A勻速運動,同時動點N從點C出發(fā),在CB邊上以每秒 cm的速度向點B勻速運動,設運動時間為t秒(0≤t≤5),連接MN.

(1)若BM=BN,求t的值;
(2)若△MBN與△ABC相似,求t的值;
(3)當t為何值時,四邊形ACNM的面積最小?并求出最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,點M、N∠ABC∠ACB三等分線的交點,若∠A=60°,則∠BMN的度數是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BACBC于點D,AE⊥BC,垂足為E,且CF∥AD.

(1)如圖1,若△ABC是銳角三角形,∠B=30°,∠ACB=70°,則∠CFE=   度;

(2)若圖1中的∠B=x,∠ACB=y,則∠CFE=   ;(用含x、y的代數式表示)

(3)如圖2,若△ABC是鈍角三角形,其他條件不變,則(2)中的結論還成立嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,點A的坐標為(5,0),菱形OABC的頂點B,C都在第一象限,tan∠AOC= ,將菱形繞點A按順時針方向旋轉角α(0°<∠α<∠AOC)得到菱形FADE(點O的對應點為點F),EF與OC交于點G,連結AG.

(1)求點B的坐標.
(2)當OG=4時,求AG的長.
(3)求證:GA平分∠OGE.
(4)連結BD并延長交x軸于點P,當點P的坐標為(12,0)時,求點G的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,是由若干個完全相同的小正方體組成的一個幾何體.
(1)請畫出這個幾何體的左視圖和俯視圖;(用陰影表示)
(2)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的俯視圖和左視圖不變,那么最多可以再添加幾個小正方體?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,AB是⊙O的直徑,∠B=30°,CE平分∠ACB交⊙O于E,交AB于點D,連接AE,則SADE:SCDB的值等于( 。

A.1:
B.1:
C.1:2
D.2:3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)(﹣2,1),先將△ABC沿一確定方向平移得到△A1B1C1 , 點B的對應點B1的坐標是(1,2),再將△A1B1C1繞原點O順時針旋轉90°得到△A2B2C2 , 點A1的對應點為點A2

(1)畫出△A1B1C1;
(2)畫出△A2B2C2;
(3)求出在這兩次變換過程中,點A經過點A1到達A2的路徑總長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=5cm,AC=2cm,將△ABC繞頂點C按順時針方向旋轉45°至△A1B1C的位置,則線段AB掃過區(qū)域(圖中的陰影部分)的面積為cm2

查看答案和解析>>

同步練習冊答案