【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(5,0),菱形OABC的頂點(diǎn)B,C都在第一象限,tan∠AOC= ,將菱形繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)角α(0°<∠α<∠AOC)得到菱形FADE(點(diǎn)O的對應(yīng)點(diǎn)為點(diǎn)F),EF與OC交于點(diǎn)G,連結(jié)AG.
(1)求點(diǎn)B的坐標(biāo).
(2)當(dāng)OG=4時(shí),求AG的長.
(3)求證:GA平分∠OGE.
(4)連結(jié)BD并延長交x軸于點(diǎn)P,當(dāng)點(diǎn)P的坐標(biāo)為(12,0)時(shí),求點(diǎn)G的坐標(biāo).
【答案】
(1)
解:如圖1,過點(diǎn)B作BH⊥x軸于點(diǎn)H,
∵四邊形OABC為菱形,
∴OC∥AB,
∴∠BAH=∠COA.
∵tan∠AOC= ,
∴tan∠BAH= .
又∵在直角△BAH中,AB=5,
∴BH= AB=4,AH= AB=3,
∴OH=OA+AH=5+3=8,
∴點(diǎn)B的坐標(biāo)為(8,4)
(2)
解:如圖1,
過點(diǎn)A作AM⊥OC于點(diǎn)M,
在直角△AOM中,∵tan∠AOC= ,OA=5,
∴AM= OA=4,OM= OA=3,
∵OG=4,
∴GM=OG﹣OM=4﹣3=1,
∴AG= = =
(3)
證明:如圖1,
過點(diǎn)A作AN⊥EF于點(diǎn)N,
∵在△AOM與△AFN中, ,
∴△AOM≌△AFN(ASA),
∴AM=AN,
∴GA平分∠OGE
(4)
解:如圖2,
過點(diǎn)G作GQ⊥x軸于點(diǎn)Q,
由旋轉(zhuǎn)可知:∠OAF=∠BAD=α.
∵AB=AD,
∴∠ABP= ,
∵∠AOT=∠F,∠OTA=∠GTF,
∴∠OGA=∠EGA= ,
∴∠OGA=ABP,
又∵∠GOA=∠BAP,
∴△GOA∽△BAP,
∴ ,
∴GQ= ×4= .
∵tan∠AOC= ,
∴OQ= × = ,
∴G( , ).
【解析】(1)如圖1,過點(diǎn)B作BH⊥x軸于點(diǎn)H,構(gòu)建直角△ABH,所以利用菱形的四條邊相等的性質(zhì)和解該直角三角形得到AH、BH的長度,則易求點(diǎn)B的坐標(biāo);(2)如圖1,過點(diǎn)A作AM⊥OC于點(diǎn)M,構(gòu)建直角△OAM和直角△AMG,通過解直角△OAM求得直角邊AM的長度,然后結(jié)合圖形和勾股定理來求AG的長度;(3)如圖1,過點(diǎn)A作AM⊥OC于點(diǎn)M,構(gòu)建全等三角形:△AOM≌△AFN(ASA),利用該全等三角形的對應(yīng)邊相等得到AM=AN,最后結(jié)合角平分線的性質(zhì)證得結(jié)論;(4)如圖2,過點(diǎn)G作GQ⊥x軸于點(diǎn)Q,構(gòu)建相似三角形:△GOA∽△BAP,根據(jù)該相似三角形的對應(yīng)邊成比例得到求得GQ的長度.結(jié)合已知條件tan∠AOC= ,來求邊OQ的長度,即可得到點(diǎn)G的坐標(biāo).本題考查了四邊形綜合題.解題過程中,涉及到了全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),解直角三角形以及勾股定理等知識點(diǎn),解答該題的難點(diǎn)在于作出輔助線,構(gòu)建相關(guān)的圖形的性質(zhì).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣ 與x軸、y軸分別交于點(diǎn)A、B;點(diǎn)Q是以C(0,﹣1)為圓心、1為半徑的圓上一動點(diǎn),過Q點(diǎn)的切線交線段AB于點(diǎn)P,則線段PQ的最小是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是某校合唱團(tuán)成員的年齡分布
年齡/歲 | 13 | 14 | 15 | 16 |
頻數(shù) | 5 | 15 | x | 10﹣x |
對于不同的x,下列關(guān)于年齡的統(tǒng)計(jì)量不會發(fā)生改變的是( )
A.平均數(shù)、中位數(shù)
B.眾數(shù)、中位數(shù)
C.平均數(shù)、方差
D.中位數(shù)、方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.動點(diǎn)P從點(diǎn)A開始沿邊AB向點(diǎn)B以1cm/s的速度移動,動點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C以2cm/s的速度移動.若P,Q兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā),在運(yùn)動過程中,△PBQ的最大面積是( )
A.18cm2
B.12cm2
C.9cm2
D.3cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】濟(jì)南大明湖畔的“超然樓”被稱作“江北第一樓”,某校數(shù)學(xué)社團(tuán)的同學(xué)對超然樓的高度進(jìn)行了測量,如圖,他們在A處仰望塔頂,測得仰角為30°,再往樓的方向前進(jìn)60m至B處,測得仰角為60°,若學(xué)生的身高忽略不計(jì), ≈1.7,結(jié)果精確到1m,則該樓的高度CD為( )
A.47m
B.51m
C.53m
D.54m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圓桌面(桌面中間有一個(gè)直徑為0.4m的圓洞)正上方的燈泡(看作一個(gè)點(diǎn))發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為1.2m,桌面離地面1m,若燈泡離地面3m,則地面圓環(huán)形陰影的面積是( )
A.0.324πm2
B.0.288πm2
C.1.08πm2
D.0.72πm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是線段AB的黃金分割點(diǎn)(AC>BC),下列結(jié)論錯(cuò)誤的是( )
A.
B.BC2=AB?BC
C.=
D.≈0.618
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長為4cm的正方形ABCD繞它的頂點(diǎn)A旋轉(zhuǎn)180°,頂點(diǎn)B所經(jīng)過的路線長為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣2x﹣8交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B.
(1)求直線AB對應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于y軸,在點(diǎn)A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點(diǎn)的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com