【題目】通過(guò)類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個(gè)案例,請(qǐng)補(bǔ)充完整.
原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說(shuō)明理由.
(1)思路梳理
∵AB=CD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線.
根據(jù)___________,SAS
易證△AFG≌___________△AEF
,得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°.點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系______________∠B+∠D=180°
時(shí),仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫(xiě)出推理過(guò)程.
【答案】答案見(jiàn)解析.
【解析】
試題分析:(1)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,再證明△AFG≌△AFE進(jìn)而得到EF=FG,即可得EF=BE+DF;
(2)∠B+∠D=180°時(shí),EF=BE+DF,與(1)的證法類同;
(3)根據(jù)△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABE′,根據(jù)旋轉(zhuǎn)的性質(zhì),可知△AEC≌△ABE′得到BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根據(jù)Rt△ABC中的,AB=AC得到∠E′BD=90°,所以E′B2+BD2=E′D2,證△AE′D≌△AED,利用DE=DE′得到DE2=BD2+EC2;
試題解析:(1)∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線,
在△AFE和△AFG中
,
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF.
(2)∠B+∠D=180°時(shí),EF=BE+DF;
∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180°,
∴∠FDG=180°,點(diǎn)F、D、G共線,
在△AFE和△AFG中
,
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF.
(3)猜想:DE2=BD2+EC2,
證明:連接DE′,根據(jù)△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABE′,
∴△AEC≌△ABE′,
∴BE′=EC,AE′=AE,
∠C=∠ABE′,∠EAC=∠E′AB,
在Rt△ABC中,
∵AB=AC,
∴∠ABC=∠ACB=45°,
∴∠ABC+∠ABE′=90°,
即∠E′BD=90°,
∴E′B2+BD2=E′D2,
又∵∠DAE=45°,
∴∠BAD+∠EAC=45°,
∴∠E′AB+∠BAD=45°,
即∠E′AD=45°,
在△AE′D和△AED中,
∴△AE′D≌△AED(SAS),
∴DE=DE′,
∴DE2=BD2+EC2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究證明:
(1)如圖1,在△ABC中,AB=AC,點(diǎn)E是BC上的一個(gè)動(dòng)點(diǎn),EG⊥AB,EF⊥AC,CD⊥AB,點(diǎn)G,F(xiàn),D分別是垂足.求證:CD=EG+EF;
猜想探究:
(2)如圖2,在△ABC中,AB=AC,點(diǎn)E是BC的延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),EG⊥AB于G,EF⊥AC交AC延長(zhǎng)線于F,CD⊥AB于D,直接猜想CD、EG、EF之間的關(guān)系為 CD=EG﹣EF ;
問(wèn)題解決:
(3)如圖3,邊長(zhǎng)為10的正方形ABCD的對(duì)角線相交于點(diǎn)O、H在BD上,且BH=BC,連接CH,點(diǎn)E是CH上一點(diǎn),EF⊥BD于點(diǎn)F,EG⊥BC于點(diǎn)G,則EF+EG= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=,AF=,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖像經(jīng)過(guò)點(diǎn)(-1.-5),且與正比例函數(shù)y=x的圖象相交于點(diǎn)(2,m).
(1)求m的值;
(2)求一次函數(shù)y=kx+b的解析式;
(3)求這兩個(gè)函數(shù)圖像與x軸所圍成的三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】保護(hù)生態(tài)環(huán)境,建設(shè)綠色社會(huì)已經(jīng)從理念變?yōu)槿藗兊男袆?dòng).某化工廠2009年1 月的利潤(rùn)為200萬(wàn)元.設(shè)2009年1 月為第1個(gè)月,第x個(gè)月的利潤(rùn)為y萬(wàn)元.由于排污超標(biāo),該廠決定從2009年1 月底起適當(dāng)限產(chǎn),并投入資金進(jìn)行治污改造,導(dǎo)致月利潤(rùn)明顯下降,從1月到5月,y與x成反比例.到5月底,治污改造工程順利完工,從這時(shí)起,該廠每月的利潤(rùn)比前一個(gè)月增加20萬(wàn)元(如圖).
⑴分別求該化工廠治污期間及治污改造工程完工后y與x之間對(duì)應(yīng)的函數(shù)關(guān)系式.
⑵治污改造工程完工后經(jīng)過(guò)幾個(gè)月,該廠月利潤(rùn)才能達(dá)到2009年1月的水平?
⑶當(dāng)月利潤(rùn)少于100萬(wàn)元時(shí)為該廠資金緊張期,問(wèn)該廠資金緊張期共有幾個(gè)月?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】嘉淇同學(xué)用配方法推導(dǎo)一元二次方程ax2+bx+c=0(a≠0)的求根公式時(shí),對(duì)于b2﹣4ac>0的情況,她是這樣做的:
由于a≠0,方程ax2+bx+c=0變形為:
x2+x=﹣,…第一步
x2+x+()2=﹣+()2,…第二步
(x+)2=,…第三步
x+=(b2﹣4ac>0),…第四步
x=,…第五步
嘉淇的解法從第 步開(kāi)始出現(xiàn)錯(cuò)誤;事實(shí)上,當(dāng)b2﹣4ac>0時(shí),方程ax2+bx+c=0(a≠O)的求根公式是 .
用配方法解方程:x2﹣2x﹣24=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)、如圖(1),AB∥CD,點(diǎn)P在AB、CD外部,若∠B=40°,∠D=15°,則∠BPD °.
(2)、如圖(2),AB∥CD,點(diǎn)P在AB、CD內(nèi)部,則∠B,∠BPD,∠D之間有何數(shù)量關(guān)系?證明你的結(jié)論;
(3)、在圖(2)中,將直線AB繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)一定角度交直線CD于點(diǎn)M,如圖(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,∠A=25°,∠B=40°.
(1)求作:⊙O,使⊙O經(jīng)過(guò)A、C兩點(diǎn),且圓心落在AB邊上;
(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法.)
(2)求證:BC是(1)中所作⊙O的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com