【題目】為推進(jìn)“全國億萬學(xué)生陽光體育運(yùn)動”的實施,組織廣大同學(xué)開展健康向上的第二課堂活動.我市某中學(xué)準(zhǔn)備組建球類社團(tuán)(足球、籃球、羽毛球、乒乓球)、舞蹈社團(tuán)、健美操社團(tuán)、武術(shù)社團(tuán),為了解在校學(xué)生對這4個社團(tuán)活動的喜愛情況,該校隨機(jī)抽取部分初中生進(jìn)行了“你最喜歡哪個社團(tuán)”調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成以下不完整的統(tǒng)計表,請根據(jù)圖表中的信息解答下列問題:
(1)求樣本容量及表格中、的值;
(2)請補(bǔ)全統(tǒng)計圖;
(3)被調(diào)查的60個喜歡球類同學(xué)中有3人最喜歡足球,若該校有3000名學(xué)生,請估計該校最喜歡足球的人數(shù).
【答案】(1),,;(2)見解析;(3)估計該校最喜歡足球的人數(shù)為75
【解析】
(1)根據(jù)喜歡武術(shù)的有12人,所占的比例是0.1,即可求得總數(shù),繼而求得其他答案;
(2)根據(jù)(1)的結(jié)果,即可補(bǔ)全統(tǒng)計圖;
(3)利用總?cè)藬?shù)3000乘以對應(yīng)的比例,即可估計該校最喜歡足球的人數(shù).
(1)∵喜歡武術(shù)的有12人,所占的比例是0.1,
∴樣本容量為:,
∵喜歡球類的有60人,
∴,
∵喜歡健美操所占的比例是0.15,
∴;
故答案為:,,;
(2)如圖所示:
(3)學(xué)校喜歡足球的人數(shù)有:(人) .
答:估計該校最喜歡足球的人數(shù)為75人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是甲、乙兩射擊運(yùn)動員10次射擊成績的折線統(tǒng)計圖,那么根據(jù)圖中的信息估計,擊中10環(huán)可能性更大的是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】機(jī)械表是日常生活中常見的一類鐘表,與電子表不同,機(jī)械表受環(huán)境、機(jī)芯等因素的影響常會產(chǎn)生走時誤差.現(xiàn)為了比較市場上甲、乙兩款機(jī)械表的精準(zhǔn)度,從兩款表中,各隨機(jī)抽取一塊進(jìn)行每日走時誤差的檢測,連續(xù)檢測10天,兩款表每日走時誤差的統(tǒng)計數(shù)據(jù)如圖(單位:秒):
(1)甲、乙兩種機(jī)械表的平均走時誤差分別是多少?
(2)小明現(xiàn)計劃購買一塊機(jī)械表,如果僅從走時的準(zhǔn)確度考慮,你會推薦他購買甲、乙哪一種,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,△ABC中,∠ACB=90°,CD⊥AB于D,E為BC中點,CF⊥AE于F.
(1)求證:4CE2=BDAB;
(2)若2∠DCF=∠ECF,求cos∠ECF的值;
(3)如圖2,DF延長線交BC于G,若AC=BC,EG=1,則DG= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線和反比例函數(shù)的圖象都經(jīng)過點,點在反比例函數(shù)的圖象上,連接.
(1)求直線和反比例函數(shù)的解析式;
(2)直線經(jīng)過點嗎?請說明理由;
(3)當(dāng)直線與反比例數(shù)圖象的交點在兩點之間.且將分成的兩個三角形面積之比為時,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:
我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.
理解:
(1)如圖1,已知Rt△ABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(保留畫圖痕跡,找出3個即可);
(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對角線BD平分∠ABC.
求證:BD是四邊形ABCD的“相似對角線”;
(3)如圖3,已知FH是四邊形EFCH的“相似對角線”,∠EFH=∠HFG=30°,連接EG,若△EFG的面積為2,求FH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點,與軸交于點.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點P是位于直線BC上方拋物線上的一個動點,求△BPC面積的最大值;
(3)若點D是y軸上的一點,且以B,C,D為頂點的三角形與相似,求點D的坐標(biāo);
(4)若點E為拋物線的頂點,點F(3,a)是該拋物線上的一點,在軸、軸上分別找點M、N,使四邊形EFMN的周長最小,求出點M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BD于E.
(1)若BC=BD,,AD=15,求△ABD的周長.
(2)若∠DBC=45°,對角線AC、BD交于點O,F為AE上一點,且AF=2EO,求證:CF=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形中,使OK邊與AB邊重合,如圖所示:按下列步驟操作:將正方形在正六邊形中繞點B順時針旋轉(zhuǎn),使KM邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點C順時針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn)……連續(xù)經(jīng)過六次旋轉(zhuǎn).在旋轉(zhuǎn)的過程中,當(dāng)正方形和正六邊形的邊重合時,點B,M間的距離可能是( 。
A. 0.5B. 0.7C. ﹣1D. ﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com