【題目】已知菱形紙片ABCD中,,點(diǎn)ECD邊的中點(diǎn)將該紙片折疊,使點(diǎn)B與點(diǎn)E重合,折痕交AD,BC邊于點(diǎn)MN,連接MENE.請從下面A,B兩題中任選一題作答,我選擇A.如圖1,若,則ME的長為______;B.如圖2,若,則ME的長為_____.

【答案】A. B.

【解析】

1)連接BD,BE,則△BCD是等邊三角形,則BECD,由BEMN,得到MNCD,則∠BNM=NCE=ENM=60°,得到△CNE是等邊三角形,則CN=CE=2,得到NBC中點(diǎn),MAD中點(diǎn),連接AO,則ME=,由OD=2CD=4,利用勾股定理求出CO,即可得到答案;

2)連接BM,由折疊性質(zhì),得到BM=EM,在RtABM中,,在RtEDM中,,設(shè),則,根據(jù)等量關(guān)系,即可求出,然后求出ME的長度.

解(1)如圖,連接BDBE,AC,

在菱形ABCD中,∠NCE=BAD=60°,BC=CD,

∴△BCD是等邊三角形,

∵點(diǎn)ECD中點(diǎn),

BECD,

由折疊的性質(zhì),得到BEMN,

MNCD

∴∠BNM=NCE=ENM=60°,

∴∠ENC=NCE=NEC=60°,

∴△CNE是等邊三角形,

CN=CE=2

∴點(diǎn)NBC的中點(diǎn),

∴點(diǎn)MAD的中點(diǎn),

ME=,

∵在RtODC中,,CD=4

由勾股定理,得

ME=;

故答案為:.

2)如圖,連接BM

由折疊的性質(zhì),得BM=EM

∵∠A=90°,則四邊形ABCD是正方形,

∴∠D=A=90°,AB=AD=4

RtABMRtEDM中,由勾股定理,得:

,

設(shè),則,

,

解得:,

AM=

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)yax+b和反比例函數(shù)y在同一直角坐標(biāo)系中的大致圖象是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲,乙兩人分別從,兩地相向而行,甲先走3分鐘后乙才開始行走,甲到達(dá)地后立即停止,乙到達(dá)地后立即以另一速度返回地,在整個(gè)行駛的過程中,兩人保持各自速度勻速行走,甲,乙兩人之間的距離(米)與乙出發(fā)的時(shí)間(分鐘)的函數(shù)關(guān)系如圖所示.當(dāng)甲到達(dá)地時(shí),則乙距離地的時(shí)間還需要________分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】東坡商貿(mào)公司購進(jìn)某種水果成本為20/kg,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價(jià)P(/kg)與時(shí)間t(天)之間的函數(shù)關(guān)系式P且其日銷售量ykg)與時(shí)間t(天)的關(guān)系如表下:

時(shí)間t(天)

1

3

6

10

20

日銷售量ykg

118

114

108

100

80

1)已知yt之間的變化符合一次函數(shù)關(guān)系,試求在第30天的日銷售量.

2)哪一天的銷售利潤最大?最大日銷售利潤為多少?

3)在實(shí)際銷售前24天中,該公司決定每銷售1kg水果就捐贈(zèng)n元利潤(0n9)給精準(zhǔn)扶貧對象,現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈(zèng)后的日銷售利潤隨時(shí)間t的增大而增大,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)小風(fēng)箏與一個(gè)大風(fēng)等形狀完全相同,它們的形狀如圖所示,其中對角線ACBD.已知它們的對應(yīng)邊之比為13,小風(fēng)箏兩條對角線的長分別為12cm14cm

1)小風(fēng)箏的面積是多少?

2)如果在大風(fēng)箏內(nèi)裝設(shè)一個(gè)連接對角頂點(diǎn)的十字交叉形的支撐架,那么至少需用多長的材料?(不記損耗)

3)大風(fēng)箏要用彩色紙覆蓋,而彩色紙是從一張剛好覆蓋整個(gè)風(fēng)箏的矩形彩色紙(如圖中虛線所示)裁剪下來的,那么從四個(gè)角裁剪下來廢棄不用的彩色紙的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD中,,點(diǎn)EBC邊上的一點(diǎn)(不與B,C重合),以BE為邊構(gòu)造菱形BEFG,使點(diǎn)G落在AB的延長線上,連接BD,GE,射線FEBD于點(diǎn)H.

1)求證:四邊形BGEH是平行四邊形;

2)請從下面AB兩題中任選一題作答,我選擇______.

A.若四邊形BGEH為菱形,則BD的長為_____.

B.連接HC,CF,BF,若,且四邊形BHCF為矩形,則CF的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),二次函數(shù)yx2+bx+c的圖象與x軸交于A,B兩點(diǎn),與y軸的負(fù)半軸相交于點(diǎn)C(如圖),點(diǎn)C的坐標(biāo)為(0,﹣3),且BOCO

1)求出B點(diǎn)坐標(biāo)和這個(gè)二次函數(shù)的解析式;

2)求△ABC的面積;

3)設(shè)這個(gè)二次函數(shù)的圖象的頂點(diǎn)為M,求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AE⊥BC于點(diǎn)E,延長BC至點(diǎn)F使CF=BE,連結(jié)AF,DE,DF.

(1)求證:四邊形AEFD是矩形;

(2)若AB=6,DE=8,BF=10,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面8m時(shí),水面寬AB12m.當(dāng)水面上升6m時(shí)達(dá)到警戒水位,此時(shí)拱橋內(nèi)的水面寬度是多少m

下面給出了解決這個(gè)問題的兩種方法,請補(bǔ)充完整:

方法一:如圖1,以點(diǎn)A為原點(diǎn),AB所在直線為x軸,建立平面直角坐標(biāo)系xOy,

此時(shí)點(diǎn)B的坐標(biāo)為(      ),拋物線的頂點(diǎn)坐標(biāo)為(   ,   ),

可求這條拋物線所表示的二次函數(shù)的解析式為   

當(dāng)y6時(shí),求出此時(shí)自變量x的取值,即可解決這個(gè)問題.

方法二:如圖2,以拋物線頂點(diǎn)為原點(diǎn),對稱軸為y軸,建立平面直角坐標(biāo)系xOy,

這時(shí)這條拋物線所表示的二次函數(shù)的解析式為   

當(dāng)y   時(shí),求出此時(shí)自變量x的取值為   ,即可解決這個(gè)問題.

查看答案和解析>>

同步練習(xí)冊答案