【題目】依據(jù)下列解方程的過(guò)程,請(qǐng)?jiān)谇懊胬ㄌ?hào)內(nèi)填寫(xiě)變形步驟,在后面的括號(hào)內(nèi)填寫(xiě)變形依據(jù).

解:原方程可變形為,

去分母,得.(____________________)

去括號(hào),得.(____________________)

移項(xiàng),得.(____________________)

合并,得.(合并同類(lèi)項(xiàng))

(______),得.______________

【答案】見(jiàn)解析

【解析】

變形的依據(jù)都是根據(jù)等式的性質(zhì),乘法分配律.

解:去分母是根據(jù)等式的基本性質(zhì)變形的,等式兩邊同時(shí)乘以同一個(gè)數(shù),等式仍然成立;

去括號(hào)是利用的乘法分配律;

移項(xiàng)是根據(jù)等式的基本性質(zhì)變形的,等式兩邊同時(shí)加上或減去同一個(gè)數(shù),等式仍然成立;

解一元一次方程的一般步驟的最后一步為系數(shù)化1,是根據(jù)等式的基本性質(zhì)變形的.

則從上到下,從左到右依次填:

等式的基本性質(zhì);去括號(hào)法則(或乘法分配律);等式的基本性質(zhì);系數(shù)化為1;等式的基本性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(3,0)為圓心,5為半徑的圓與x軸相交于B. C,y軸的負(fù)半軸相交于D,拋物線(xiàn)y=x+bx+c經(jīng)過(guò)B. C. D三點(diǎn)。

(1)求此拋物線(xiàn)的解析式;

(2)若動(dòng)直線(xiàn)MN(MNx)從點(diǎn)D開(kāi)始,以每秒1個(gè)長(zhǎng)度單位的速度沿y軸的正方向移動(dòng),且與線(xiàn)段CD、y軸分別交于M、N兩點(diǎn),動(dòng)點(diǎn)P同時(shí)從點(diǎn)C出發(fā),在線(xiàn)段OC上以每秒2個(gè)長(zhǎng)度單位的速度向原點(diǎn)O運(yùn)動(dòng),連接PM,設(shè)運(yùn)動(dòng)時(shí)間為t秒,若以P、C. M為頂點(diǎn)的三角形與△OCD相似,求實(shí)數(shù)t的值;

②當(dāng)t為何值時(shí), 的值最大,并求出最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形紙片ABCD中,已知AD=8AB=6,E是邊BC上的點(diǎn),以AE為折痕折疊紙片,使點(diǎn)B落在點(diǎn)F處,連接FC,當(dāng)△EFC為直角三角形時(shí),BE的長(zhǎng)為   

【答案】36

【解析】試題分析:

由題意可知有兩種情況,見(jiàn)圖1與圖2;

1:當(dāng)點(diǎn)F在對(duì)角線(xiàn)AC上時(shí),∠EFC=90°,

∵∠AFE=∠B=90°,∠EFC=90°,

點(diǎn)AF、C共線(xiàn),

矩形ABCD的邊AD=8,

∴BC=AD=8,

Rt△ABC中,AC==10,

設(shè)BE=x,則CE=BC﹣BE=8﹣x,

由翻折的性質(zhì)得,AF=AB=6EF=BE=x,

∴CF=AC﹣AF=10﹣6=4,

Rt△CEF中,EF2+CF2=CE2,

x2+42=8﹣x2,

解得x=3,

BE=3

2:當(dāng)點(diǎn)F落在AD邊上時(shí),∠CEF=90°,

由翻折的性質(zhì)得,∠AEB=∠AEF=×90°=45°

四邊形ABEF是正方形,

∴BE=AB=6

綜上所述,BE的長(zhǎng)為36

故答案為:36

考點(diǎn):1、軸對(duì)稱(chēng)(翻折變換);2、勾股定理

型】填空
結(jié)束】
15

【題目】計(jì)算:()2+(﹣4)0cos45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于任意四個(gè)有理數(shù)a,bc,d可以組成兩個(gè)有理數(shù)對(duì)a,bcd).我們規(guī)定

a,bcd=bcad

例如:(1,23,4=2×31×4=2

根據(jù)上述規(guī)定解決下列問(wèn)題

1有理數(shù)對(duì)2,-33,-2=_______;

2若有理數(shù)對(duì)(-3,2x11,x+1=7,x=_______;

3當(dāng)滿(mǎn)足等式(-32x1k,xk=52kx是整數(shù)時(shí),求整數(shù)k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,□ABCD,點(diǎn)EF、G、H分別在邊AB、BC、CD、DA,AECG,AHCF

(1)求證:△AEH≌△CGF

(2)EG平分∠HEF,求證四邊形EFGH是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,反比例函數(shù)x>0)的圖象經(jīng)過(guò)點(diǎn)A,1),射線(xiàn)AB與反比例函數(shù)圖象交于另一點(diǎn)B(1,a),射線(xiàn)ACy軸交于點(diǎn)C,∠BAC=75°,ADy垂足為D

(1)k的值;

(2)tan∠DAC的值及直線(xiàn)AC的解析式

(3)如圖2,M是線(xiàn)段AC上方反比例函數(shù)圖象上一動(dòng)點(diǎn)過(guò)M作直線(xiàn)lx,AC相交于點(diǎn)N連接CM,求△CMN面積的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究性學(xué)習(xí)小組進(jìn)行了探究活動(dòng).如圖,已知一架竹梯AB斜靠在墻角MON處,竹梯AB=13m,梯子底端離墻角的距離BO=5m.

(1)求這個(gè)梯子頂端A距地面有多高;

(2)如果梯子的頂端A下滑4 m到點(diǎn)C,那么梯子的底部B在水平方向上滑動(dòng)的距離BD=4 m嗎?為什么?

(3)亮亮在活動(dòng)中發(fā)現(xiàn)無(wú)論梯子怎么滑動(dòng),在滑動(dòng)的過(guò)程中梯子上總有一個(gè)定點(diǎn)到墻角O的距離始終是不變的定值,會(huì)思考問(wèn)題的你能說(shuō)出這個(gè)點(diǎn)并說(shuō)明其中的道理嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一張長(zhǎng)為7cm,寬為5cm的矩形紙片上,現(xiàn)在剪下一個(gè)腰長(zhǎng)為4cm的等腰三角形,要求等腰三角形的一個(gè)頂點(diǎn)與矩形的一個(gè)頂點(diǎn)重合,其余的兩個(gè)頂點(diǎn)在矩形的邊上,則剪下的等腰三角形一腰上的的高為_____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20141月,國(guó)家發(fā)改委出臺(tái)指導(dǎo)意見(jiàn),要求2015年底前,所有城市原則上全面實(shí)行居民階梯水價(jià)制度.小明為了解市政府調(diào)整水價(jià)方案的社會(huì)反響,隨機(jī)訪(fǎng)問(wèn)了自己居住小區(qū)的部分居民,就每月每戶(hù)的用水量調(diào)價(jià)對(duì)用水行為改變兩個(gè)問(wèn)題進(jìn)行調(diào)查,并把調(diào)查結(jié)果整理繪制成下面的統(tǒng)計(jì)圖(圖1,圖2).

小明發(fā)現(xiàn)每月每戶(hù)的用水量在5m3-35m3之間,有8戶(hù)居民對(duì)用水價(jià)格調(diào)價(jià)漲幅抱無(wú)所謂,不會(huì)考慮用水方式的改變,根據(jù)小明繪制的圖表和發(fā)現(xiàn)的信息,完成下列問(wèn)題:

(Ⅰ)n= ,小明調(diào)查了 戶(hù)居民,并補(bǔ)全圖2

(Ⅱ)每月每戶(hù)用水量的中位數(shù)和眾數(shù)分別落在什么范圍?

(Ⅲ)如果小明所在小區(qū)有1800戶(hù)居民,請(qǐng)你估計(jì)視調(diào)價(jià)漲幅采取相應(yīng)的用水方式改變的居民戶(hù)數(shù)有多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案