【題目】隨著科技進(jìn)步,無(wú)人機(jī)的應(yīng)用越來(lái)越廣,如圖,在某一時(shí)刻,無(wú)人機(jī)上的探測(cè)器顯示,從無(wú)人機(jī)A處看一棟樓頂部B點(diǎn)的仰角和看與頂部B在同一鉛垂線(xiàn)上高樓的底部c的俯角.

(1)如果上述仰角與俯角分別為30。與60 , 且該樓的高度為30米,求該時(shí)刻無(wú)人機(jī)的豎直高度CD.
(2)如果上述仰角與俯角分別為α與β,且該樓的高度為m米.求用α、β、m表示該時(shí)刻無(wú)人機(jī)的豎直高度CD.

【答案】
(1)解 :過(guò)A作AD⊥CB,垂足為點(diǎn)D.
∵在Rt△ABD中,∠BAD=30°,
∴AB=2BD
∵在Rt△ABC中,∠CBA=60°,
∴∠ACB=30°
∴BC=2AB ,又∵BC=30米 ,
∴AB=15米
∴BD=7.5米
∴CD=BC-BD=30-7.5=22.5米
答:無(wú)人機(jī)的豎直高度CD為22.5米。


(2)解 :設(shè)CD=x,則 BD=m-x ,
在Rt△ABD中,∠BAD=α,
∴tanα== ;
在Rt△ADC中,∠DCA=β ,
∴tanβ== ,
,
tanβ·(m-x)=tanα·x
∴x=

【解析】(1)在Rt△ABD中,∠BAD=30°,從而得出AB=2BD ,同理得出BC=2AB ,又BC=30米 ,從而得出,BD的長(zhǎng)度,根據(jù)CD=BC-BD得出結(jié)果 ;
(2)設(shè)CD=x,則 BD=m-x ,在Rt△ABD中利用正切函數(shù)的定義得出tanα== ,同理得出tanβ==;然后利用列出方程求解即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是4,點(diǎn)EBC的中點(diǎn),連接DE,DFDEBA的延長(zhǎng)線(xiàn)于點(diǎn)F.連接EFAC,DE、EF分別與C交于點(diǎn)P、Q,則PQ_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a#0)的圖象如圖所示,給出以下四個(gè)結(jié)論:
①abc=0,②a+b+c>0,③b=3a, ④4ac—b2<0;其中正確的結(jié)論有( )


A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠BAC=90。 , AB=6,sinC= ,以點(diǎn)A為圓心,AB長(zhǎng)為半徑作弧交AC于M,分別以B、M為圓心,以大于 BM長(zhǎng)為半徑作弧,兩弧相交于N,射線(xiàn)AN與BC相交于D,則AD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象相交于A(2,3),B(a,1)兩點(diǎn).

(1)求這兩個(gè)函數(shù)表達(dá)式;
(2)求證:AB=2BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是等腰三角形,,

尺規(guī)作圖:作的角平分線(xiàn)BD,交AC于點(diǎn)保留作圖痕跡,不寫(xiě)作法;

判斷是否為等腰三角形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)l經(jīng)過(guò)平面直角坐標(biāo)系的原點(diǎn)O,且與x軸正方向的夾角是30°,點(diǎn)A的坐標(biāo)是(0,1),點(diǎn)B在直線(xiàn)l上,且AB∥x軸,則點(diǎn)B的坐標(biāo)是 , 現(xiàn)將△ABO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到△A1BO1的位置,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A1落在直線(xiàn)l上,再將△A1BO1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)到△A1B1O2的位置,使點(diǎn)O1的對(duì)應(yīng)點(diǎn)O2落在直線(xiàn)l上,順次旋轉(zhuǎn)下去…,則點(diǎn)A6的橫坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)經(jīng)過(guò)點(diǎn),

1求直線(xiàn)的解析式;

2若直線(xiàn)與直線(xiàn)相交于點(diǎn)求點(diǎn)的坐標(biāo);

3根據(jù)圖象,直接寫(xiě)出關(guān)于的不等式的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,將△COD繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)得到△C1OD1 , 旋轉(zhuǎn)角為θ(0°<θ<90°),連接AC1、BD1 , AC1與BD1交于點(diǎn)P.

(1)如圖1,若四邊形ABCD是正方形.請(qǐng)直接寫(xiě)出AC1 與BD1的數(shù)量關(guān)系和位置關(guān)系.
(2)如圖2,若四邊形ABCD是菱形,AC=6,BD=8,判斷AC1與BD1的數(shù)量關(guān)系和位置關(guān)系,并給出證明;
(3)如圖3,若四邊形ABCD是平行四邊形,AC=6,BD=12,連接DD1 , 設(shè)AC1=kBD1 , 請(qǐng)直接寫(xiě)出k的值和AC12+(kDD12的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案