【題目】甲乙兩人想共同承包一項工程,甲單獨做30天完成,乙單獨做20天完成,合同規(guī)定15天完成,若完不成視為違約,甲乙兩人經過商量后簽訂了該合同.

(1)正常情況下,甲乙兩人能否履行該合同?為什么?

(2)現(xiàn)在兩人合作了9天,因別處有急事,必需調走1人,問兩人能否違約?

【答案】(1)正常情況下,甲乙兩人能履行該合同;(2)若調走甲,不違約;若調走乙,違約.

【解析】

(1)設甲乙合作需要x天完成,建立方程求出合作時間,再與15進行比較可以得出結論;

(2)先求合作9天完成的工作量,然后再計算剩下的工作量甲乙各自還需要的時間,將前后兩個時間和加起來與15比較,可以求出結論.

解:(1)設甲、乙兩人合作完成此項工程需x天,

根據(jù)題意得:+=1,

解得:x=12,

x=1215,

∴正常情況下,甲乙兩人能履行該合同.

(2)設兩人合作了9天后,甲繼續(xù)完成此項工程還需a天,則:

++=1,

解得:a=7.5,

此時,9+7.5=16.515,違約;

設兩人合作了9天后,乙繼續(xù)完成此項工程還需b天,則:

++=1,

解得:b=5,

此時,9+5=1415,不違約.

綜上所述:若調走甲,不違約;若調走乙,違約.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰ABC中,AB=BC,將ABC繞頂點B逆時針方向旋轉度到A1BC1的位置,ABA1C1相交于點D,ACA1C1、BC1分別交于點E、F.

(1)若∠ABC=,DBF=,則=______°;

(2)求證:BCF≌△BA1D;

(3)連接DF,當∠DBF=時,判定DBF的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結論:
①當x>3時,y<0;②3a+b<0;③﹣1≤a≤﹣ ;④4ac﹣b2>8a;
其中正確的結論是(

A.①③④
B.①②③
C.①②④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)x>0)的圖象經過點A,B,點A的坐標為(1,2).過點AACy軸,AC1(點C位于點A的下方),過點CCDx軸,與函數(shù)的圖象交于點D,過點BBECD,垂足E在線段CD上,連接OC,OD

1)求△OCD的面積;

2)當BEAC時,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.

(1)求購買A型和B型公交車每輛各需多少萬元?

(2)預計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?

(3)在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有理數(shù)分為正有理數(shù)與負有理數(shù);

飛機向前運動千米記作千米,則向下運動千米記作千米;

零既是自然數(shù),又是整數(shù);既是負數(shù),又是分數(shù).其中正確的有(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC,BC及AB的延長線相較于點D,E,F(xiàn),且BF=BC,⊙O是△BEF的外接圓,∠EBF的平分線交EF于點G,交⊙O于點H,連接BD,F(xiàn)H.

(1)求證:△ABC≌△EBF;
(2)試判斷BD與⊙O的位置關系,并說明理由;
(3)若AB=1,求HGHB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一架長2.5m的梯子AB斜靠在墻AC上,∠C=90°,此時,梯子的底端B離墻底C的距離BC0.7m.

(1)求此時梯子的頂端A距地面的高度AC;

(2)如果梯子的頂端A下滑了0.9m,那么梯子的頂端B在水平方向上向右滑動了多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E是AD上一點,延長CE到點F,使∠FBC=∠DCE.
(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在AD上作出一點P,使△BPC∽△CDP(保留作圖的痕跡,不寫作法).

查看答案和解析>>

同步練習冊答案