【題目】正六邊形的邊心距為 ,這個正六邊形的面積為( )
A.2
B.4
C.6
D.12
【答案】C
【解析】解:如圖,連接OA、OB;過點O作OG⊥AB于點G.
在Rt△AOG中,OG= ,∠AOG=30°,
∵OG=OAcos 30°,
∴OA= = =2,
∴這個正六邊形的面積=6S△OAB=6× ×2× =6 .
故選C.
【考點精析】解答此題的關(guān)鍵在于理解正多邊形的定義的相關(guān)知識,掌握在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形,以及對正多邊形的性質(zhì)的理解,了解正多邊形都是軸對稱圖形.一個正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心;正多邊形的中心邊數(shù)為偶數(shù)的正多邊形是中心對稱圖形,它的對稱中心是正多邊形的中心.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠C=90°,AC=8,BC=3,線段PQ=AB,P、Q兩點分別在AC和過點A且垂直于AC的射線AX上運動,問P點運動到AP=_________時,才能使ΔABC與ΔAPQ 全等。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是等邊△ABC內(nèi)一點.將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC,連接OD.已知∠AOB=110°.
(1)求證:△COD是等邊三角形;
(2)當α=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當α為多少度時,△AOD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,E是AD上一點,AE=AB,過點E作直線EF,在EF上取一點G,使得∠EGB=∠EAB,連接AG.
(1)如圖1,當EF與AB相交時,若∠EAB=60°,求證:EG=AG+BG;
(2)如圖2,當EF與AB相交時,若∠EAB=α(0°<α<90°),請你直接寫出線段EG、AG、BG之間的數(shù)量關(guān)系(用含α的式子表示);
(3)如圖3,當EF與CD相交時,且∠EAB=90°,請你寫出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC中,AC=BC=10,AB=12.
(1)動手操作:利用尺規(guī)作以BC為直徑的⊙O,⊙O交AB于點D,⊙O交AC于點E,并且過點D作DF⊥AC交AC于點F.
(2)求證:直線DF是⊙O的切線;
(3)連接DE,記△ADE的面積為S1 , 四邊形DECB的面積為S2 , 求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若四邊形ABCD、四邊形GFED都是正方形,AD=4, ,當正方形GFED繞D旋轉(zhuǎn)到如圖的位置,點F在邊AD上,延長CE交AG于H,交AD于M.則CM的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ADB=∠ACB=90°,AC與BD交于點O,且AC=BD.有下列結(jié)論:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正確的是( )
A. ①②③④ B. ①②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣x2+bx+c上部分點的橫坐標x,縱坐標y的對應(yīng)值如表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,有下列說法:
①拋物線與y軸的交點為(0,6);
②拋物線的對稱軸是x=1;
③拋物線與x軸有兩個交點,它們之間的距離是 ;
④在對稱軸左側(cè)y隨x增大而增大.
其中正確的說法是( )
A.①②③
B.②③④
C.②③
D.①④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩塊面積相同的試驗田,分別收獲蔬菜900kg和1500kg,已知第一塊試驗田每畝收獲蔬菜比第二塊少300kg,求第一塊試驗田每畝收獲蔬菜多少千克?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com