【題目】當(dāng)取最小值時(shí),代數(shù)式的最小值為__________

【答案】

【解析】

根據(jù)絕對(duì)值的定義可知|a+b-4|+2|b+2|的最小值為0,得出a=6,b=-2,代入代數(shù)式|x+a+b|-|x-b|計(jì)算即可.

解:∵|a+b-4|≥0 2|b+2|≥0
|a+b-4|+2|b+2|≥0
∴根據(jù)題意|a+b-4|+2|b+2|=0,得a=6,b=-2
a=-2,b=-2代入|x+a+b|-|x-b|=|x+4|-|x+2|
①當(dāng)x≥-2時(shí),|x+4|-|x+2|=x+4-x+2=2
②當(dāng)-4x-2時(shí),|x+4|-|x+2|=x+4--x-2=2x+6
-4x-2,-22x+62
③當(dāng)x≤-4時(shí),|x+4|-|x+2|=-x-4--x-2=-2
綜上所述,|x+a+b|-|x-b|的最小值為-2
故答案為-2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題再現(xiàn):

數(shù)形結(jié)合是一種重要的數(shù)學(xué)思想方法,借助這種思想方法可將抽象的數(shù)學(xué)知識(shí)變得直觀并且具有可操作性.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過表示幾何圖形面積的方法進(jìn)行直觀推導(dǎo)和解釋.

例如:利用圖形的幾何意義驗(yàn)證完全平方公式.

將一個(gè)邊長(zhǎng)為的正方形的邊長(zhǎng)增加,形成兩個(gè)長(zhǎng)方形和兩個(gè)正方形,如圖所示:這個(gè)圖形的面積可以表示成:

這就驗(yàn)證了兩數(shù)和的完全平方公式.

類比解決:

請(qǐng)你類比上述方法,利用圖形的幾何意義驗(yàn)證平方差公式.

(要求畫出圖形并寫出推理過程)

問題提出:如何利用圖形幾何意義的方法證明

如圖所示,表示1個(gè)1×1的正方形,即:,表示1個(gè)2×2的正方形,恰好可以拼成1個(gè)2×2的正方形,因此:、就可以表示2個(gè)2×2的正方形,即:、恰好可以拼成一個(gè)的大正方形.

由此可得:.

嘗試解決:

請(qǐng)你類比上述推導(dǎo)過程,利用圖形的幾何意義確定:_______.(要求寫出結(jié)論并構(gòu)造圖形寫出推證過程).

問題拓廣:

請(qǐng)用上面的表示幾何圖形面積的方法探究:_______.(直接寫出結(jié)論即可,不必寫出解題過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥ABE.

(1)若∠BAC=50°,求∠EDA的度數(shù);

(2)求證:直線AD是線段CE的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛貨車從百貨大樓出發(fā)送貨,向東走了4千米到達(dá)小明家,繼續(xù)向東走了1.5千米到達(dá)小紅家,然后向西走了8.5千米到達(dá)小剛家,最后返回百貨大樓.

1)以百貨大樓為原點(diǎn),向東為正方向,1個(gè)單位長(zhǎng)度表示1千米,請(qǐng)?jiān)跀?shù)軸上標(biāo)出小明、小紅、小剛家的位置.(小明家用點(diǎn)表示,小紅家用點(diǎn)表示,小剛家用點(diǎn)表示)

2)求這輛貨車此次送貨(從出發(fā)到返回百貨大樓)總共走的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將四張邊長(zhǎng)各不相同的正方形紙片按如圖方式放入矩形內(nèi)(相鄰紙片之間互不重疊也無縫隙),未被四張正方形紙片覆蓋的部分用陰影表示.設(shè)右上角與左下角陰影部分的周長(zhǎng)的差為.若知道的值,則不需測(cè)量就能知道周長(zhǎng)的正方形的標(biāo)號(hào)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,且滿足,為原點(diǎn).若動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為()

的值;

當(dāng)點(diǎn)運(yùn)動(dòng)到線段上時(shí),分別取的中點(diǎn),試探究下列結(jié)論:

的值為定值;②的值為定值,

其中有且只有一個(gè)是正確的,請(qǐng)將正確的選出來并求出該值;

當(dāng)點(diǎn)從點(diǎn)出發(fā)運(yùn)動(dòng)到點(diǎn)時(shí),另一動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度在間往返運(yùn)動(dòng),當(dāng)時(shí),求動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮從家出發(fā)步行到公交站臺(tái)后,等公交車去學(xué)校,如圖, 折線表示這個(gè)過程中行程 s (千米)與所花時(shí)間 t (分)之間的關(guān)系, 列說法錯(cuò)誤的是(

A.他家到公交車站臺(tái)需行 1 千米B.他等公交車的時(shí)間為 4 分鐘

C.公交車的速度是 500 /D.他步行與乘公交車行駛的平均速度300米/分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知ABC中,AB=AC,BAC=90°,直角EPF的頂點(diǎn)PBC邊上的中點(diǎn),兩邊PE,PF分別交AB,AC于點(diǎn)EF,給出以下四個(gè)結(jié)論:

AE=CF;②EF=AP;③2S四邊形AEPF=SABC;④當(dāng)EPFABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A,B重合)有BE+CF=EF;上述結(jié)論中始終正確的序號(hào)有__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠1=2,∠3=E,試說明:∠A=EBC,(請(qǐng)按圖填空,并補(bǔ)理由,)

證明:∵∠1=2(已知),

____________,________

∴∠E=______,________

又∵∠E=3(已知),

∴∠3=______(等量代換),

____________(內(nèi)錯(cuò)角相等,兩直線平行),

∴∠A=EBC,________

查看答案和解析>>

同步練習(xí)冊(cè)答案