【題目】已知直線AB上 一點(diǎn)O,以O為端點(diǎn)畫(huà)射線OC,作∠AOC的角平分線OD,作∠BOC的角平分線OE;
(1)按要求完成畫(huà)圖;
(2)通過(guò)觀察、測(cè)量你發(fā)現(xiàn)∠DOE= °;
(3)補(bǔ)全以下證明過(guò)程:
證明:∵OD平分∠AOC(已知)
∴∠DOC= ∠AOC( )
∵OE平分∠BOC(已知)
∴∠EOC= ∠BOC( )
∵∠AOC+∠BOC= °
∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)= °.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】試一試,找規(guī)律
如圖,用火柴棒擺三角形圖案,第1個(gè)圖形需要3根火柴棒,第2個(gè)圖形需要5根火柴棒……
(1)按此規(guī)律,第5個(gè)圖案需要__________根火柴棒.
(2)第n個(gè)圖案需要___________根火柴棒.
(3)如果用2019根火柴棒去擺,是第____________個(gè)圖案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知梯形ABCD中,AD∥BC,∠C=90°,以CD為直徑的圓與AB相切,AB=6,求梯形ABCD的中位線長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=100°
(1)如圖1,OC平分∠AOB,OD、OE分別平分∠BOC和∠AOC,求∠DOE的度數(shù);
(2)當(dāng)OC為∠AOB內(nèi)任一條射線時(shí),如圖2,OD、OE仍是∠BOC和∠AOC的平分線,此時(shí)能否求出∠DOE的度數(shù)?如果能,請(qǐng)你求出∠DOE的度數(shù);
(3)當(dāng)OC為∠AOB外任一條射線時(shí),如圖3,OD、OE仍是∠BOC和∠AOC的平分線,此時(shí)能否求出∠DOE的度數(shù)?如果能,請(qǐng)你求出∠DOE的度數(shù);
(4)通過(guò)上面幾個(gè)問(wèn)題探求,請(qǐng)你用一個(gè)結(jié)論來(lái)表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度數(shù).
(2)上題中若∠B=40°,∠C=80°改為∠C>∠B,其他條件不變,請(qǐng)你求出∠EAD與∠B、∠C之間的數(shù)列關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BE=CF,AB∥DE,添加下列哪個(gè)條件不能證明△ABC≌△DEF的是( )
A. AB=DE B. ∠A=D C. AC=DF D. AC∥DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥AB交BC于F,交AC于E,過(guò)點(diǎn)O作OD⊥BC于D,下列四個(gè)結(jié)論:
①∠AOB=90°+∠C;②AE+BF=EF;③當(dāng)∠C=90°時(shí),E,F分別是AC,BC的中點(diǎn);④若OD=a,CE+CF=2b,則S△CEF=ab.其中正確的是( 。
A. ①② B. ③④ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D在BC上,DE⊥AB于點(diǎn)E,DF⊥BC交AC于點(diǎn)F,BD=CF,BE=CD.若∠AFD=145°,則∠EDF=_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點(diǎn),連接BE.
(1)如圖1,若∠ABE=15°,O為BE中點(diǎn),連接AO,且AO=1,求BC的長(zhǎng);
(2)如圖2,D為AB上一點(diǎn),且滿足AE=AD,過(guò)點(diǎn)A作AF⊥BE交BC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥CD交BE的延長(zhǎng)線于點(diǎn)G,交AC于點(diǎn)M,求證:BG=AF+FG.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com