【題目】(1)如圖,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度數(shù).

(2)上題中若∠B=40°,∠C=80°改為∠C>∠B,其他條件不變,請(qǐng)你求出∠EAD與∠B、∠C之間的數(shù)列關(guān)系?并說(shuō)明理由.

【答案】(1)20°;(2)∠EAD=∠C﹣∠B.理由見(jiàn)解析.

【解析】

(1)根據(jù)三角形內(nèi)角和定理求出∠BAC,求出∠CAE,根據(jù)三角形內(nèi)角和定理求出∠CAD,代入∠EAD=CAE-CAD求出即可;

(2)根據(jù)三角形內(nèi)角和定理求出∠BAC,求出∠CAE,根據(jù)三角形內(nèi)角和定理求出∠CAD,代入∠EAD=CAE-CAD求出即可.

1)∵∠B=40°,∠C=80°,

∴∠BAC=180°-B-C=60°,

AE平分∠BAC,

∴∠CAE=BAC=30°

ADBC,

∴∠ADC=90°,

∵∠C=80°,

∴∠CAD=90°-C=10°,

∴∠EAD=CAE-CAD=30°-10°=20°;

2)∵三角形的內(nèi)角和等于180°,

∴∠BAC=180°-B-C

AE平分∠BAC,

∴∠CAE=BAC=180°-B-C),

ADBC

∴∠ADC=90°,

∴∠CAD=90°-C,

∴∠EAD=CAE-CAD=180°-B-C-90°-C=C-B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,由一個(gè)邊長(zhǎng)為a的小正方形與兩個(gè)長(zhǎng)、寬分別為a,b的小長(zhǎng)方形拼接成大長(zhǎng)方形ABCD,則整個(gè)圖形可表達(dá)出一些有關(guān)多項(xiàng)式因式分解的等式,請(qǐng)你寫(xiě)出其中任意三個(gè)等式:__________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.

(1)求證:△BAD≌△CAE;

(2)請(qǐng)判斷BD、CE有何大小、位置關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在折紙活動(dòng)中,小明制作了一張△ABC紙片,點(diǎn)D、E分別是邊AB、AC,將△ABC沿著DE折疊壓平,AA′重合,若∠A=68°,則∠1+∠2=____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

(1)1

(2)10x+714x53x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線AB 一點(diǎn)O,以O為端點(diǎn)畫(huà)射線OC,作∠AOC的角平分線OD,作∠BOC的角平分線OE;

1)按要求完成畫(huà)圖;

2)通過(guò)觀察、測(cè)量你發(fā)現(xiàn)∠DOE= °;

3)補(bǔ)全以下證明過(guò)程:

證明:∵OD平分∠AOC(已知)

∴∠DOC= AOC

OE平分∠BOC(已知)

∴∠EOC= BOC

∵∠AOC+BOC= °

∴∠DOE=DOC+EOC= (∠AOC+BOC= °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】沒(méi)有水就沒(méi)有生命.地球上的總儲(chǔ)量中97%是咸水,余下的是淡水,其中可直接飲用的只有0.5%,大約有105萬(wàn)億噸,約占淡水總量的 其余淡水資源集中在兩極冰川中,難以利用.目前,世界上近20%的人缺少飲用水,我國(guó)的形勢(shì)也十分嚴(yán)峻,人均可用淡水量比世界人均可用淡水量少25%

1)世界上可用淡水量占淡水總量的百分之幾;

2)世界上只有百分之幾的人口不缺飲用水;

3)我國(guó)人均可用淡水量相當(dāng)于世界人均可用淡水量的百分之幾;

4)世界上的水資源總儲(chǔ)量大約為多少萬(wàn)億噸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C是以AB為直徑的⊙O上的一點(diǎn),BD與過(guò)點(diǎn)C的切線互相垂直,垂足為點(diǎn)D.
(1)求證:BC平分∠DBA;
(2)若CD=6,BC=10,求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠1和∠2互補(bǔ),∠C=EDF.

(1)判斷DFEC的關(guān)系為   

(2)試判斷DEBC的關(guān)系,并說(shuō)明理由.

(3)試判斷∠DEC與∠DFC的關(guān)系并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案